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ABSTRACT

The SARS-CoV-2 virus is primarily transmitted through in-person interaction, and so its growth in urban space is a complex
function of human mobility that cannot be adequately explained with standard epidemiological models. Recent studies leveraged
fine-grained urban mobility data to accurately model viral spread, but such data pose privacy concerns and are often difficult to
collect, especially in developing regions. To reduce the data barrier, here we propose a novel metapopulation SEIR model
coupled with an urban mobility model. Experiments on real-world data collected from cities in the United States, India and Brazil
show that our model can estimate complex, distinctive COVID-19 growth curves with high accuracy. Estimated mobility changes
are consistent with empirical observations. Our model also reproduces urban “superspreading”, where a few neighborhoods
account for most new infections and it can inform location-aware reopening policies to achieve a better balance of social cost
and disease prevention.

Introduction
The mechanism of SARS-CoV-2 spread in urban space is inherently complex, embedded in heterogeneous urban human
mobility behavior. This has led to distinctive growth patterns of confirmed cases in cities worldwide, ranging from exponential
to sublinear growth1–3. Nevertheless, most classic epidemiological frameworks, such as the Susceptible-Exposed-Infectious-
Recovered (SEIR) model4, adopt the assumption of homogeneous population mixing5, which can only explain exponential
growth curves and is at odds with empirical observations. In response, recent research has introduced the mechanism of
self-containment to extend the expressive power of the SEIR model to capture subexponential growth6. Self-containment
policies are simulated by gradually removing susceptible persons from the overall population, but this strategy continues to
model urban population as a group of homogeneous individuals, which cannot explain widely observed urban “superspreading
events” and the spatial heterogeneity of COVID risk7, 8. Recent studies have begun to leverage fine-grained empirical mobility
data to augment models of coronavirus spread9–11, but these raise significant privacy concerns12 and create a high demand for
mobility data collection13, which may not be possible to satisfy in the developing world. These concerns and limitations pose a
pressing need for an expressive, general epidemiological model that can capture the complex mechanism of coronavirus spread
and estimate varying trajectories of infection without mobility data. This is especially important to inform the design of flexible
and adaptive containment and reopening policies.

Here, we present a novel metapopulation SEIR model that natively incorporates fundamental patterns of urban mobility
behavior. We model urban space as a set of spatially distributed neighborhoods, and capture human mobility behavior as
population flows among neighborhoods with a underlying urban mobility model. Inspired by Stouffer’s law of opportunity-
driven urban movement14 and Tobler’s first law of geography15, we use a general gravity model that predicts mobility flows
as proportional to neighborhood population and inversely proportional to travel distance. Atop simulated mobility flows, we
overlay a metapopulation SEIR model to characterize the infection within each neighborhood and track inter-neighborhood
disease spread arising from urban mobility. This model allows us to jointly consider spatially heterogeneous urban mobility
behavior and urban population distribution without costly mobility data.



Experiments on real-world data collected from 30 of the most infectious counties and cities in the United States, India and
Brazil show that our model can accurately estimate the complex and distinctive growth curves tracing COVID-19 confirmed
cases (R2 > 0.980). Estimated mobility changes are consistent with real-world observations derived from Apple Mobility
Trends Reports16 (Pearson’s R = 0.872), suggesting the effectiveness of our model in substituting for human mobility data. Our
model can also characterize urban “superspreading events” by tracking the spatially heterogeneous coronavirus spread through
urban neighborhoods, where a small portion (20%) of neighborhoods account for a large portion (68.3%) of new infections.
Moreover, experiments show that urban “superspreading events” are a joint result of uneven urban population distribution
and heightened population flows associated with populous neighborhoods. We demonstrate that by focusing on those regions
predicted to have the highest infection risk, the proposed model can facilitate location-aware reopening policies that result
in significantly more effective epidemic control at a similar level of mobility restriction without the need for costly mobility
monitoring17. Moreover, our proposed model serves as a simulation framework for the cost-effective evaluation of reopening
policy under different scenarios, e.g., different levels of mobility activity and different infection rates from new variants. In this
way, our model reduces the demand for mobility data in estimating COVID-19 growth and informing the design of flexible and
targeted reopening policies, which can guide countries through the transition to a post-pandemic world, especially in developing
regions with limited data and access to therapies and vaccines.

Results
Urban mobility rules driven metapopulation SEIR model
We adopt a metapopulation scheme to model the fine-grained spread of disease in urban space. This breaks down urban space
into numerous spatially distributed neighborhoods that each contains a sub-population, and maintains a separate SEIR model
with its own susceptible (S), exposed (E), infectious (I), and recovered (R) states (see Supplementary Figure 1 in SI Appendix ).
We use a gravity model to characterize mobility flows between neighborhoods, accounting for two fundamental rules in human
mobility behaviour: social interaction and travel cost (see Methods M1). The rule of social interaction emphasizes the attraction
of social interaction opportunity, which characterizes Stouffer’s law of opportunity-driven human movement14) and can be
approximated by the population size of destination neighborhoods. Besides, the rule of travel cost captures the locality of
urban movements18—Tobler’s first law of geography15. These rules can be principally integrated into a general gravity model
that predicts mobility flows proportional to neighborhood population and inversely proportional to travel distance. Therefore,
our proposed model simulates occurrences of new infections within each neighborhood with separate SEIR models, and
their dispersal to other neighborhoods according to predicted mobility flows. There are three free parameters in the proposed
model: (1) a learnable infection rate β that accounts for infectiousness of coronavirus, e.g., the effect of social distancing
policies19, 20 and the emergence of new variants21; (2) a learnable quarantine rate κ that accounts for the capacity of testing
and quarantine22, 23; (3) and a learnable mobility level M that accounts for changes in mobility behavior, e.g., the effect of
stay-at-home orders and suspensions of public transportation24. Other epidemiological parameters are set according to recent
COVID-19 studies (see Supplementary Table.S1 in SI Appendix). Urban population distributions are derived from the open
source WorldPop database25.

We evaluate our model with the task of estimating growth curves tracing confirmed cases of COVID-19 in 30 of the most
infectious counties and cities in the United States, Brazil and India. To characterize the potential for changes in mobility
behavior, we segment the simulation period based on the implementations of nationwide intervention policies in the United
States, Brazil and India, and then fit separate parameters for each segmented period (Supplementary Figure 2 in SI Appendix).
Ground truth data for confirmed cases are collected from official statistics released by each country26–28 (see Supplementary
Table.S2, S3, S4 in SI Appendix). Selected cities exhibit complex and distinctive growth curves (Fig. 1A, red dotted lines),
which can be classified into four categories: linear (Hudson, King, and most Brazilian cities), concave (Bergen, Miami-Dade,
Nassau, etc.), convex (Cook, Davidson, Los Angeles, etc.), and S-shaped (Harris, New Orleans, Will, and most Indian cities).
All of these distinctive growth trajectories can be accurately estimated by our model, with R2 scores above 0.980 for all cities
(Fig. 1A, blue lines). By contrast, the standard SEIR model fails to reproduce these empirical growth patterns, only predicting
exponential or no growth with R0 > 1 and R0 < 1, respectively (Fig. 1A, green lines)6. Moreover, we theoretically prove that
our model is expressive enough to capture the complex forms of COVID-19 growth (see Methods M2), substantially extending
the expressive power of classic epidemiological models. We find that different levels of urban mobility have a significant
impact on the shape of growth curves (Supplementary Figure 3 in SI Appendix). These results justify the need to incorporate
rules of urban mobility to characterize the complex growth of COVID-19 cases. We further evaluate our model by predicting
future confirmed cases in all 20 U.S. counties within two weeks, i.e., May 1-14 (Fig. 1B). Results demonstrate that our model
significantly outperforms the standard SEIR model by reducing the normalized root mean square error (NRMSE) from 7.222
to 0.294. Experiments on mobility behavior change manifest a high correlation (Pearson’s R = 0.872) between the mobility
reduction estimated by our model and real-world observations derived from Apple Mobility Trends Reports16 (Fig. 1C), which
demonstrates that our model can accurately estimate empirical mobility behavior changes without mobility data. These results
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suggest that our model can be robustly generalized to cities and regions in the developing world where mobility data is lagging
or limited.

Reproducing and rationalizing superspreading events in urban space
Superspreading events have been widely observed in epidemics like SARS, Measles and Smallpox29, as well as COVID-19,
where a small portion of infected people and locations are responsible for a disproportionate number of new infections.
Researchers have identified accumulating superspreading events of COVID-19 through case study7, 8, phylogenetic analysis22, 30

and statistical evaluation31, 32. Superspreading cannot be adequately explained by the standard SEIR model reliant on the
fundamental assumption of homogeneous population mixing. As a result, researchers have tried to characterize superspreading
events with dispersion parameter k, which measures how the transmissive power of each individual deviates from the general
population8, 29 with a negative binomial model. This statistical approach, however, neglects the behavioral mechanism
underlying the superspreading phenomenon, e.g., spatially heterogeneous population mixing. Moreover, recent research has
found evidence that superspreading events can be better characterized with fat-tailed power law distributions32, which further
suggest their link to human behavior patterns. Because our model is tuned to characterize the spatial heterogeneity of disease
spreading in urban space, here we examine the mechanism of superspreading through the analytical framework provided by our
model.

We use the infectee-infector ratio to measure spatially heterogeneous infection risk among different neighborhoods, which
we define as the average number of new infections per previously infected person. We rank neighborhoods based on the infectee-
infector ratio, and calculate the cumulative distribution function of the infected population and new infections occurrences
(Fig. 2A). If the infection risk is spatially homogeneous, we expect the cumulative distribution function to grow linearly with
the number of neighborhoods following the black dashed line. Our model reproduces a highly skewed distribution where
the most infectious 20% of neighborhoods are responsible for 68.3% of new infections. We use the Gini index33 to quantify
unevenness in the spatial distribution of the infected population and new infection occurrences, which measure 0.630 and 0.663,
respectively, indicating a high degree of spatial heterogeneity. We further validate simulated spatially heterogeneous infection
risk with fine-grained confirmed cases in New York City34 (Fig. 2B). We observe a high correlation between predicted and
real-world infections in each neighborhood (Spearman’R = 0.583). These results indicate our model can effectively extend the
expressive power of the standard epidemiological model to explain superspreading events and prediction is consistent with
real-world observation.

To investigate the mechanism behind superspreading events, we look at the effect of urban population distribution and
urban mobility behaviors. First, recent research found empirical evidence that the uneven urban population distribution might
contribute to the spatially heterogeneous infection risk in urban space35, and the empirically observed urban population
distributions follow a highly uneven exponential distribution (Supplementary Figure 4 in SI Appendix). Specifically, if urban
population distribute evenly and urban movements are complete random, our model will degenerate into a standard SEIR model
with homogeneous population mixing, which predicts the infection risk to be spatially homogeneous. To examine the effect of
uneven urban population distribution, we simulate a urban system with real-world urban population distribution and random
urban movement (Fig. 2C). We observe that the spatial unevenness of distribution of infected population and new infections
is largely reduced, with the Gini index decreases to 0.198 and 0.090 respectively. It indicates the uneven urban population
distribution alone cannot fully explain the superspreading events in urban space. Second, the urban movement is considered
as another potential cause for the superspreading events in urban space36, which is characterized by the rules of travel cost
and social interaction in our model. To examine the effect of each rule, we evaluate two variants of urban mobility model
that only consider one rule, respectively. When the urban mobility model only considers the rule of travel cost (see Fig. 2D),
our model reproduces a similar level of spatial heterogeneity in infection risk as random movement (Fig. 2C). However, if
the urban mobility model only considers the rule of social interaction, we reproduce a strong superspreading effect with Gini
index of 0.632 and 0.539 for new infections and infected populations (see Fig. 2E), which are similar to the results of the
complete model (Fig. 2A). We also theoretically analyze the superspreading effect in Supplementary Method 1 in SI Appendix.
These results suggest that superspreading events are a joint result of an uneven urban population distribution and heightened
population flows naturally associated with populous neighborhoods.

Informing location-aware reopening policies
As a result of superspreading events, highly skewed spatial distributions of COVID-19 cases suggest the potential to design
targeted, location-aware intervention policies that more effectively curb coronavirus spread while minimizing social cost.
Specifically, due to the emergence of new coronavirus variants and the shortage of vaccine supply, prolonged citywide
lockdowns in many countries pose a pressing need for the design of reopening policies that can facilitate gradual but consistent
recovery across communities37. Here, we leverage our proposed model to inform location-aware reopening policies that only
restrict the mobility of neighborhoods with the highest predicted infection risks. We set a budget of social cost equal to the
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percentage of city population remaining under mobility restriction, then evaluate the policy’s efficacy in curbing disease spread
as the percentage of confirmed cases that would be prevented compared to a complete reopening.

Populous neighborhoods tend to be more vulnerable to coronavirus transmission35 (Spearman correlation = 0.74, see
Supplementary Figure 5 in SI Appendix). A naive reopening policy might involve maintaining mobility restrictions for the most
populated neighborhoods and first reopening other neighborhoods, but this strategy imposes high social costs and as shown in
Fig. 2. Given a social cost budge of lifting the mobility restriction on 95% city population, if we reopen the least populated
neighborhoods, then 28.49% of overall confirmed cases can be avoided in counties in U.S. compared to complete reopening,
which outperforms the baseline of randomly selecting neighborhoods for reopening (Fig. 3A). Nevertheless, infection risk
involves factors beyond neighborhood population and with the same social cost budget, if we reopen the neighborhoods with
the least predicted infection risks, the overall confirmed cases can be reduced by 60.13% (Fig. 3A). Similar observations are
made for Indian and Brazilian cities (Fig. 3C, E), where reopening policies informed by our model consistently outperform
baselines of reopening least populated or random neighborhoods (see Supplementary Table.S5, S6, S7 in SI Appendix). These
results suggest that our model can inform the design of substantially more cost-effective, location-aware reopening policies.

To examine sources of differential efficacy, we visualize neighborhoods selected for remaining under mobility restriction
in three cities (Fig. 3B, D and F). The case of Los Angeles county (L.A.) illustrates how the baseline policy focused only
on population density would miss the high infection risk that occurs in less populous neighborhoods around central L.A.
because it cannot model these neighborhoods’ mobility flows with nearby, densely populated neighborhoods (Fig. 3B). For
cities in developing countries such as Delhi and São Paulo, we find that reopening policies informed by our model can better
capture infections in multiple-center cities by considering both the population size and distance from nearby city centers
(Fig. 3D, F). For example, in Fig. 3D, we show how our model selects neighborhoods in central areas that are likely the hubs of
urban mobility, but that this has only 8.7% overlap with the top populated neighborhoods. More detailed analysis suggests
the location-aware reopening policy informed by our model can also effectively alleviate super-spreading events in cities
(Supplementary Figure 6 in SI Appendix).

Simulating the epidemic development under different scenarios
As efforts to reduce the spread of COVID-19 continue, the dynamic of coronavirus spread shifts as new variants emerge21,
urban mobility behavior changes24 and new social distancing policies are implemented19. As a general framework that
incorporates urban mobility with virus spread, our model can simulate epidemic development under different scenarios with
distinct parameter settings. Therefore, we can evaluate the scenarios of varying mobility, infection rates, quarantine rates
and intervention times in the epidemic development in 20 U.S. counties (Fig. 4A-D), respectively. First, we investigate how
mobility affects disease transmission by assuming a different level of mobility in our model (see (Supplementary Method 2 in
SI Appendix for details in tuning mobility behavior). The simulation shows that restricting mobility behavior is effective in
reducing coronavirus transmission, where 10% higher real-world mobility activity will lead to nearly threefold the number
of overall infections (2.93 times; IQR 1.57 ∼ 7.24), and 10% less mobility will halve the number of cases (0.525 times;
IQR 0.237∼ 0.783). As a point of comparison, the average observed mobility drop in U.S. counties during the pandemic is
approximately 30.3% (Supplementary Figure 7 in SI Appendix, with IQR 0.227∼ 0.392), which suggests the mobility behavior
change during pandemic was effective in curbing the spread of coronavirus. Controlling the infection rate is also an effective
method to fight the disease, where a 10% decrease in infection rate nearly halves infections (0.524 times; IQR 0.231∼ 0.661).
This suggests the great importance of reducing the infection rate of coronavirus, which can be achieved by improving the
distribution and administration of effective vaccinations38, 39. Quarantine is another widely adopted approach to contain the
spreading of coronavirus40, but with a more complicated asymmetric effect. Our model predicts that the number of confirmed
cases will be 29% higher given a 10% decrease in quarantine rate (1.29 times; IQR 1.06 ∼ 2.38), while a 10% increase in
quarantine rate will prevent approximately 78% of citywide infections (0.221 times; IQR 0.0739∼ 0.525). This asymmetric
effect of quarantine rates suggests the necessity of ensuring that testing capacity and hospital resources are sufficient. These
capacities can greatly reduce overall infections once they pass a critical threshold. Finally, timely responses to COVID-19
spread are considered critical for combating the virus41. To explore policy response with our model, we shifted the time point
of mobility behavior change to simulate the potential effect of different response times. We find that a delay of 10 days causes
3.26 times higher overall infections (IQR 1.58∼ 9.53), while adopting policies 10 days earlier reduces the infections by 57.5%
(0.425 times; IQR 0.12∼ 0.71). These analyses reveal how timely interventions such as mobility reduction, social distancing
and quarantine can play important roles in curbing viral spread and flattening growth curves.

Discussion
Our model aims to capture the fine-grained transmission process of coronavirus in cities with a minimal data burden. We show
that by observing only the population distribution and number of confirmed cases, our model can accurately reproduce the
complex growth curves of COVID-19 cases and forecast future trends in cities from both developed and developing countries.
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Our model provides a theoretical framework to explain the distinctive growth curves in different cities from the perspective of
urban mobility. Furthermore, our model can reproduce and explain superspreading events in cities resulting from the uneven
distribution of urban population and spatially heterogeneous mobility. In these ways, our model markedly augments the
expressive power of current epidemiological models. We demonstrate that targeted, location-aware reopening policies can be
designed based on the prediction of our model, which can achieve better balance between epidemic control and social cost. As
a general simulation framework, our model can evaluate likely outcomes under different natural and policy scenarios. Finally,
the minimal data requirement ensures our model can be easily generalized to cities and regions without fine-grained mobility
data, which will be particularly beneficial to developing countries.

Our study has two clear limitations. First, our parsimonious model only incorporates three learnable parameters, which
account for infection rate, quarantine rate and mobility level. We do not consider all of the rich, contextual features that might
influence the spread of coronavirus, such as weather42, changing attitudes towards containment policies43, and population
demographics like age23 and socioeconomic status9. Second, our model adopts the same set of parameters for all neighborhoods,
which might limit model expressiveness in capturing neighborhood heterogeneity. Nevertheless, analysis demonstrates that
our model can accurately trace citywide COVID-19 cases, suggesting sufficient expressiveness for characterizing urban viral
transmission dynamics. Moreover, the minimum model setting improves its robustness and generalizability.

Our model and analysis hold several implications for understanding the COVID-19 epidemic that could improve the
design of reopening policies. First, our analysis suggests that widely observed superspreading events are not solely due to the
randomness of rare events, but also systematically linked with the underlying heterogeneity in human mobility. We further
demonstrate the need to jointly consider urban environment and human mobility behavior to effectively curb superspreading.
Second, our model leverages rule-based mobility to inform reopening policies without fine-grained mobility data, demonstrating
how better epidemic control can co-exist with better privacy protection. Third, experiments show that our estimated mobility
changes are consistent with real-world observations from Apple Mobility Trends Reports. This affirms that our model can offer
insights into fine-grained urban transmission dynamics and be robustly transferred to cities without mobility data. Finally, our
model can be used to comparatively and inexpensively evaluate possible epidemic scenarios in underdeveloped countries, such
as divergent vaccination rates and quarantine policies. Our model proposes dynamically customized intervention policies to
facilitate decision making in underdeveloped countries that lack fine-grained mobility data.

Methods

M1 Metapopulation SEIR model
Standard SEIR models use ordinary differential equations (ODE) to trace epidemic development, which divides the population
into four statuses: susceptible (S), exposed (E), infected (I) and recovered (R). A fundamental assumption underlying the
standard SEIR model is homogeneous population mixing such that each susceptible individual will have similar infection risk.
As a result, SEIR can neither reproduce the complex growth curves of COVID-19 confirmed cases6 nor explain the mechanism
of superspreading events8.

Here, we aim to extend the power of the standard SEIR model by introducing a metapopulation framework that incorporates
fine-grained urban mobility behavior, as shown in (Supplementary Figure 1 in SI Appendix). Specifically, we divide urban
space into numerous neighborhoods, and maintain a separate SEIR process for the sub-population in each one. The overall city
population is divided into neighborhoods based on real-world population distributions25. In each simulation epoch, our model
has two stages to trace epidemic development and population mixing, respectively. In the epidemic development stage, we
compute changes in population status according to the following equations for each neighborhood:

dsn

dt
=−β snen−β inen + InputS(n, t)

den

dt
= (1−ωi)β snen +(1−ωi)β snin− 1

τ
en + InputE(n, t)

din

dt
= ωiβ snen +ωiβ snin +

1
τ

en−κin− γin + Inputi(n, t)

drn

dt
= κin + γin + InputR(n, t),

where sn,en, in,rn are the susceptible, exposed, infected and recovered people in neighborhood n. β is the infection rate, ωi
is the ratio that new infections immediately show symptoms and transition to infected, τ is average incubation time of exposed
persons, and κ denotes the quarantine rate at which infected persons are removed from the population.
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For the infection states for the whole city, we have

S = ∑
n

sn

E = ∑
n

en

I = ∑
n

in

R = ∑
n

rn.

Here we formally introduce the input terms of our formulations. Inputs are determined based on incoming and outgoing
population due to urban mobility. Specifically, in the stage of population mixing, we simulate the urban mobility behavior
based on the following gravity model:

mi j = M
Nρ

i Nθ
j

exp(di j/r)
,

where M is the mobility level depicting intensity of urban mobility, Ni and N j are the population size of the original and
destination neighborhoods, and di j is the Manhattan distance between them. ρ,θ ,r are empirical coefficients we set based on
recent urban mobility research44.

For each input terms, we have

InputS(n, t) = M∑
m

Nρ
mNθ

n

exp(dmn/r)
× sm

Nm

InputE(n, t) = M∑
m

Nρ
mNθ

n

exp(dmn/r)
× em

Nm

InputI(n, t) = M∑
m

Nρ
mNθ

n

exp(dmn/r)
× im

Nm

InputR(n, t) = M∑
m

Nρ
mNθ

n

exp(dmn/r)
× rm

Nm ,

where the summation is for each neighborhood. The second terms of the above equations depicts the percentage of susceptible,
exposed, infected and recovered people in the source neighborhood. We assume each person has an equal possibility of
traveling, regardless of their status. This gravity model assumes that mobility flows between neighborhoods are negatively
correlated with travel distance and positively correlated with population size, which simultaneously captures rules of social
interaction and travel distance. We set the infection rate β , quarantine rate κ and mobility level M as learnable parameters
to estimate epidemic dynamics. Besides, we set other epidemiological parameters based on recent COVID-19 research (see
Supplementary Table. S1 in SI Appendix).

M2 Theoretical analysis of complex growth curves
To evaluate our model’s capacity for capturing complex growth curves of COVID-19 confirmed cases, we consider two extreme
scenarios. First, we consider a complete lockdown scenario (M → 0) in which coronavirus is contained to several initial
neighborhoods. In this, the effective population is the combined population of these neighborhoods, which will be significantly
smaller than the whole population (Ne f f � N). It is equivalent to an exponential depletion of susceptible people resembling
the self-containment mechanism in the recent SIR-X model, which has been proved to reproduce sub-exponential growth
curves6. Moreover, our model provides a micro foundation to explain the sub-exponential growth of COVID-19 cases from the
perspective of urban mobility behavior.

The second extreme case is the circumstance of highly efficient city-wide population mixing (M→ ∞). In this scenario,
population mixing in each simulation epoch makes persons of different status distribute proportionately across neighborhoods
based on the size of each subpopulation. Therefore, the epidemic development stage of each neighborhood runs a similar SEIR
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model, but with different population sizes:

dsn

dt
=−β snen−β inen

den

dt
= (1−ωi)β snen +(1−ωi)β snin− 1

τ
en

din

dt
= ωiβ snen +ωiβ snin +

1
τ

en−κin− γin+

drn

dt
= κin + γin,

where sn,en, in,rn have similar proportion composition in each neighborhood. For example, the number of susceptible people in
the neighborhood can be computed as

sn =
sn + en + in + rn

S+E + I +R
S

= pnS,

where pn is the proportion of population in neighborhood n.
Therefore, city-wide epidemic development is a linear sum of this set of homogeneous SEIR models. For example,

coronavirus transmission (the decrease in susceptible population) occurs in each simulation epoch and can be computed as
follows:

dS
dt

=
ds1

dt
+

ds2

dt
+ · · ·+ dsm

dt
=−(β s1e1 +β s1i1)− (β s2e2 +β s2i2)−·· ·− (β smem +β smim)

=−(βSE +βSI)p2
1− (βSE +βSI)p2

2−·· ·− (βSE +βSI)p2
m

=

(( m

∑
i=1

p2
i β
)
SE +

( m

∑
i=1

p2
i β

)
SE

)
.

Similar equations can be derived for exposed, infected, and recovered populations. Therefore, we see that city-wide epidemic
development is equivalent to an SEIR model with different parameters, where the equivalent infection rate is βequ =

(
∑

m
i=1 p2

i β
)
.

As a result, it can reproduce exponential growth curves from the standard SEIR model.
Our proposed metapopulation model lies between these two extreme cases, with mobility level parameter ranges from

complete lockdown (M → 0) to highly efficient population mixing (M → ∞). Therefore, by changing the mobility level,
our model can reproduce complex growth curves ranging from sub-linear to exponential (see Supplementary Figure 3 in SI
Appendix). As a result, our model is provably expressive to capture the complex growth curves of COVID-19 confirmed cases.

Data Availability
The empirical data sets from cities in US, India and Brazil that support this study are available in GitHub, https://github.com/0oshowero0/COVID19-
urban-mobility-model.

Code Availability
The source code for numeric simulation is available online: https://github.com/0oshowero0/COVID19-urban-mobility-model.
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Figure 1. Predicting COVID-19 growth in the 30 most infectious counties and cities in the U.S., India and Brazil. (A)
Reproducing growth curves for COVID-19 confirmed cases. Red dots are empirical observations of confirmed cases, blue lines
are growth curves estimated by our model, and green lines are growth curves estimated by the standard SEIR model. The
shaded area represents the 99% confidence interval. Diamond markers denote the time of policy interventions. Our model can
better reproduce empirically observed COVID-19 growth curves, resulting in significantly higher accuracy. (B) Evaluating our
model with the task of predicting future confirmed cases within 14 days for all 20 U.S. counties. The normalized root mean
square error (NRMSE) of our model is 0.294, compared to 7.222 for the standard SEIR model. (C) Correlation between
empirical mobility reduction and model estimation before and after announcement of nationwide emergency status around
March 25 for U.S. counties. Our model can accurately estimate mobility behavior change with a Pearson correlation coefficient
of 0.872.
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Figure 2. Reproducing and rationalizing superspreading events in cities. (A) The distribution of infected population and
occurrences of new infections across neighborhoods ranked by infectee-infector ratio. If the infected populations and new
infections are distributed evenly, they are expected to follow the black dashed line. Our model reproduces a significant uneven
distribution with the bottom 80% neighborhoods only accounting for 42.2% infected persons (orange line) and 31.7% new
infections (blue line). Shaded areas represent the interquartile range for all urban counties. The Gini index for the distributions
of new infections and infected populations are 0.630 and 0.553 respectively, which suggests the infection risk is spatially
heterogeneous in cities. (B) The correlation between predicted infection risk and real-world observation across neighborhoods
in New York city. We find a high correlation between the rank of predicted confirmed cases and real-world observed confirmed
cases across New York neighborhoods (Spearman’s R = 0.583), which suggests the spatially heterogeneous infection risk
predicted by our model is consistent with empirical observations. (C) When substituting the mobility model with random
movement, the spatial unevenness of the distributions of infected population and new infections is largely reduced. (D) When
only considering the rule of travel cost, we reproduce a similar level of spatial unevenness as the random movement. (E) When
only considering the rule of social interaction, we reproduce similar level of spatial unevenness as the complete model in (A).
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Figure 3. The effectiveness of different location-aware reopening policies. (A, C, E) Performance of different reopening
policies in U.S. counties, Indian and Brazilian cities. We calculate the percentage of infected population in cities of each
country. The reopening policy informed by our model leads to a 60.13% decrease in cumulative infections in U.S. counties,
which significantly outperforms the strategy of not reopening top populated neighborhoods (28.49%). Besides, the reopening
policy informed by our model leads to a 34.41% and 51.14% decrease in cumulative infections in India and Brazil, respectively.
(Solid lines denote the median value of all counties and cities, and shaded areas represent interquartile ranges). (B, D, F)
Visualization of neighborhoods selected for remaining under mobility control in different reopening policies in Los Angeles,
Delhi and São Paulo. The neighborhoods selected by our model differ significantly with the top populated strategies. Our
model jointly considers population distribution and urban mobility behavior, which better capture the most infectious locations
for both single-center (LA) and multi-center (Delhi and São Paulo) cities.
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Figure 4. Estimated growth curves for COVID-19 infections in U.S. counties under different scenarios. All Figures
show the median value of confirmed cases across 20 U.S. counties under different scenarios normalized by the overall
real-world confirmed cases, where the shaded areas denote interquartile range. (A) Estimated growth curves with different
urban mobility activities. (B) Estimated growth curves under different quarantine rates. (C) Estimated growth curves under
different infection rates. (D) Estimated growth curves with different intervention dates. The vertical lines denote the dates of
intervention policy.
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