
Automorphic Equivalence-aware
Graph Neural Network

Fengli Xu1, Quanming Yao1,2, Pan Hui3, Yong Li1
1BNRIST & EE Department, Tsinghua University

24Paradigm Inc.
3CSE Department, HKUST.

liyong07@tsinghua.edu.cn

Abstract

Distinguishing the automorphic equivalence of nodes in a graph plays an essential
role in many scientific domains, e.g., computational biologist and social network
analysis. However, existing graph neural networks (GNNs) fail to capture such
an important property. To make GNN aware of automorphic equivalence, we
first introduce a localized variant of this concept — ego-centered automorphic
equivalence (Ego-AE). Then, we design a novel variant of GNN, i.e., GRAPE,
that uses learnable AE-aware aggregators to explicitly differentiate the Ego-AE
of each node’s neighbors with the aids of various subgraph templates. While the
design of subgraph templates can be hard, we further propose a genetic algorithm
to automatically search them from graph data. Moreover, we theoretically prove
that GRAPE is expressive in terms of generating distinct representations for nodes
with different Ego-AE features, which fills in a fundamental gap of existing GNN
variants. Finally, we empirically validate our model on eight real-world graph data,
including social network, e-commerce co-purchase network, and citation network,
and show that it consistently outperforms existing GNNs. The source code is public
available at https://github.com/tsinghua-fib-lab/GRAPE.

1 Introduction

The past few years have witnessed the phenomenal success of GNNs in numerous graph learning tasks,
such as node classification [24], link prediction [59], and community detection [19], which is largely
due to their capability of simultaneously modelling the connecting patterns and feature distribution
in each node’s local neighborhood. As a result, it leads to a surge of interests from both academia
and industry to develop more powerful GNN models [52]. Despite of various architectures, the
most popular GNNs, like GCN [24], GraphSAGE [19], GAT [48] and GIN [55], apply permutation
invariant aggregate function on each node’s local neighborhood to learn node embeddings, which
leads to concerns about their representational power [17, 55].

In this paper, we investigate GNN’s expressiveness from an important but largely overlooked angle,
i.e., the capacity to distinguish automorphic equivalence within each node’s local neighborhood.
Automorphic equivalence (AE) [14] is a classic concept to differentiate the structural role of each node
in a given graph. Specifically, two nodes are considered to be AE only if they are interchangeable in
some index permutations that preserve the connection matrix, i.e., graph automorphisms [35]. AE can
identify the nodes that exhibit identical structural features in a graph, which makes it a central topic in
computational biologist, social network analysis and other scientific domains [33, 34]. For example,
empirical studies show AE is an important indicator of social position and behavior similarity in
social network [16, 37], which thus might significantly benefit GNN architecture design.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Empirically efficient heuristics have been proposed to identify the AE in moderate scale graphs by
enumerating all the possible automorphisms [6, 45]. However, previous analytic methods only classify
nodes into categorical equivalence sets. Although categorical features can be jointly optimized with
GNNs under various frameworks [30, 54], little previous efforts are invested to principally incorporate
AE into GNNs. Thus, we aim to design a novel GNN model that is provably expressive in capturing
AE features and can be tuned in a data-dependent manner based on the graph data and targeted
applications, which will effectively allow us to learn expressive function to harness the power of AE
feature.

Here, we propose GRaph AutomorPhic Equivalent network, i.e., GRAPE, a novel variant of GNN
that can learn expressive representation by differentiating the automorphic equivalences of each
node’s neighbors. First, GRAPE extends the classic AE concept into a localized setting, i.e., Ego-AE,
to accommodate the local nature of GNNs. Specifically, Ego-AE identifies the local neighborhoods of
each node by mapping with given subgraph templates and then partitions the neighboring nodes into
Ego-AE sets based on the graph automorphisms in neighborhood. Second, we design a learnable AE-
aware aggregators to model the node features in these Ego-AE sets, which adaptively assigns different
weights to neighboring nodes in different Ego-AE sets and explicitly model the interdependency
among them. Moreover, in order to capture complex structural features, GRAPE proposes to fuse the
embeddings learned from Ego-AE sets identified by different subgraph templates with a squeeze-and-
excitation module [22]. Finally, to alleviate the barrier of subgraph template design, we propose an
efficient genetic algorithm to automatically search for optimal subgraph templates. Specifically, it
gradually optimizes a randomly initiated population of subgraph templates by iteratively exploring
the adjacency of good performing candidates and eliminating the bad performing ones. To accelerate
the search process, we further design an incremental subgraph matching algorithm that can leverage
the similarity between subgraphs to greatly reduce the complexity of finding matched instances.

We theoretically prove that the proposed GRAPE is expressive in terms of learning distinct repre-
sentations for nodes with different Ego-AE sets, which fundamentally makes up the shortcomings
of popular GNN variants, e.g., GCN [24], GraphSAGE [19], GAT [48] and GIN [55]. Moreover,
we empirically validate GRAPE on eight real-world datasets, which cover the scenarios of social
network, citation network and e-commerce co-purchase network. Experiments show GRAPE is
consistently the best performing model across all datasets with up to 26.7% accuracy improvement.
Besides, case studies indicate GRAPE can effectively differentiate the structural roles of each node’s
neighbors. Moreover, the proposed genetic algorithm efficiently generates high quality subgraph
templates that have comparable performance with the hand-crafted ones.

2 Related Works

In the sequel, we define a graph as G = (V, E), where V = {v1,· · · ,vn} is the set of nodes and
E = {(vi, vj)} is the set of edges. Let the feature vector of node vi be X (vi), and N (vi) represents
the set of vi’s neighbor nodes. N is the number of node and M is the embedding size.

2.1 Automorphic Equivalence (AE) in Graph Analysis

Here, we investigate one of the most popular structural equivalence concepts, i.e., automorphic
equivalence (AE) [14] which plays a central role in computational biologist, social network analysis
and other scientific domains [33, 34]. The most interesting part of AE is that it identifies the nodes
with exact same structural patterns, e.g., degree and centrality [15], but not necessarily connecting to
the same neighboring nodes. Basically, AE is defined as follows.

Definition 2.1. Given a graph G = (V, E), an automporphism π(?) is a node permutation that
preserves the adjacency matrix, i.e., the permuted nodes π(va) and π(vb) are connected if and only if
nodes va and vb are connected. Two nodes va and vb are considered to be Automorphic Equivalence
(AE) if there is a graph automorphism that maps one onto the other, i.e., π(va) = vb.

Nodes in V that are AE with each other constitutes a AE set. An example of such sets is in Figure 1 (a).
Specifically, AE sets can be identified by enumerating the automorphism group of the given graph
with efficient Nauty algorithm [35], and the nodes that are mapped onto each others in different
automorphisms will be partitioned into same AE sets.

2

Figure 1: Illustration of AE and the limitation of MPNN framework.

Previous works have attempted to preserve the structural similarities on graph via various node
embedding algorithms [12, 2, 40]. Recently, GraphWave [12] was proposed to leverage wavelet
diffusion patterns to capture the structural roles in node representations. Besides, role2vec [2]
introduced a generalized feature-based random walks that aims to represent the structural similarities
among nodes.

However, the connection between AE and GNN has not been examined in existing literature. More-
over, AE is defined on whole graph level, which is infeasible to compute in large graphs and goes
against the inherent local nature of most GNN frameworks. In this paper, we aim to extend the AE
concept to local setting, and propose a novel GNN model to harness its power.

2.2 The Expressive Power of GNNs

The recent success of GNNs draws increasing interests in investigating their capability in capturing
structural properties [55, 17]. Specifically, message passing neural network (MPNN) is the most
popular GNN framework [18, 19, 55].

Let AGG be the aggregate function that collects feature from neighbors, and COMB be the combine
function that integrates each node’s self feature with those from AGG. Generally, MPNN generates
representation for a node vt at k-th layer as

hk
vt = COMB

(
hk−1
vt , AGG(Hk−1

vt)
)
, (1)

where h0(vi) = X (vi), andHk−1
vt =

{
hk−1
vj |vj ∈ N (vt)

}
. Existing MPNNs use local permutation

invariant AGGs to compute node embeddings, which subsumes a large class of popular GNN models
such as GCN [24], GraphSAGE [19], GAT [48], Geniepath [31] and GIN [55]. The family of MPNNs
is proven to be theoretically linked to Weisfeiler-Lehman (WL) subtree kernel [19]. Subsequently,
they are at most as powerful as 1-WL test on discriminating graph isomorphisms [55].

More recently, several attempts have been made to improve the expressiveness of GNN beyond
MPNN framework. They can mainly be classified into two categories: augmenting node features and
designing more powerful architectures. In terms of augmenting node feature, recent works proposed
to introduce various additional feature [42, 25, 59]. 3D-GCN uses additional 3D point cloud feature
to differentiate neighbors and facilitate learnable graph kernels [29]. Moreover, GNN variants can
in theory achieve universal approximation on graph by equipping nodes with randomly initialized
feature vector [43], but they are difficult to generalize to different graphs in practice [5]. Previous
work also proposed to augment node feature with substructure count [5], which however cannot
reveal the local structural roles in each node’s neighborhood. On the other hand, the previous efforts
of designing more powerful GNN architecture are dedicated to different structural properties, e.g.,
graph isomorphism [55] and graph moment [11]. Although AE is an important concept for graph
data analysis, it has not been addressed by previous GNN research. More detailed comparison with
the existing GNN variants is provided in Appendix A.

However, previous works have shown that identifying automorphic equivalence is a strictly more
difficult task than discriminating graph isomorphisms [46]. Specifically, two AE nodes always have

3

Figure 2: The GRAPE model. (a) The input graph with node v1 as ego node. (b) Mapping node
v1’s neighborhood with given subgraph templates, where nodes with same color are Ego-AE. (c)
Aggregating features from AE sets with learnable AE-aware aggregators. (d) Fusing multi-channel
node embedding with squeeze-and-excitation module.

isomorphic neighborhood, while the nodes with isomorphic neighborhood are not necessary AE [15].
Therefore, it raises concerns about MPNN’s expressive power of AE feature, which has not been
adequately investigated in previous research. In this paper, we aim to design a novel GNN model that
is provably expressive in modeling Ego-AE, which falling in the category of designing novel GNN
architecture. To the best of our knowledge, we are the first to empower GNN with the capability of
capturing automorphic equivalence.

2.3 Genetic Algorithm

Genetic algorithm [13] is a widely adopted algorithm for combinatorial optimization problems, e.g.,
traveling salesman problem. Recently, it has also been used to tune hyper-parameters [32] and
search neural architectures for deep networks [57, 53]. Basically, genetic algorithm mimics the
natural selection process to iteratively to search for better solutions by exploring the adjacency of
promising candidates and eliminating the worst-performing ones [10]. Therefore, it can iteratively
optimize the candidate population from parent generation to children generation. Specifically, genetic
algorithms are often made up the following four components: (i) Mutation: explores the adjacency
of promising candidates in parent generation by generating slightly different candidates in children
generation; (ii) Crossover: search for different combinations of genetic features in the candidates in
parent generation; (iii) Evaluation: measure the fitness of candidates in given tasks; (iv) Selection:
eliminating the candidates with worst performance.

Here, we design a genetic algorithm to automatically optimize the subgraph templates in the proposed
GRAPE. It effectively allows us to search the architecture of GRAPE in a data-dependent manner,
which significantly reduces the barrier of subgraph template design.

3 The Proposed Method

One prominent feature of most GNN variants is that the node embedding are generated based on the
local neighborhood, which significantly improved the scalability and generalization of GNN models.
To accommodate the local nature of GNNs, the concept of AE needs to be fundamentally extended
and redefined on each node’s local neighborhood. Besides, the local neighborhoods defined by
different subgraph templates may exert different influence on the ego node [58, 2]. Thus, we propose
a subgraph template-dependent local version of AE, i.e., ego-centered automorphic equivalence
(Ego-AE). Specifically, a subgraph template is defined as a connected graphlet S = (U ,R), where
U andR are the sets of nodes and edges, respectively. To differentiate the unique role of ego node,
we set an anchoring node in subgraph template that always maps to the ego node. Given a graph
G = (V, E), a subgraph template S = (U ,R) and a node vt, the Ego-AE on vt’s local neighborhood
is defined as follow.
Definition 3.1. We defineMS(vt) as the set of subgraphs that match the subgraph template S in
vt’s local neighborhood. An ego-centered automorphism πe(?) is an automorphism on the matched

4

subgraphs m ∈MS(vt) that has a fixed index of node vt, i.e., πe(vt) ≡ vt. Two nodes va and vb are
considered to be Ego-centered Automorphic Equivalence (Ego-AE) if there exists an automorphism
πe(?) that maps one onto the other, i.e., πe(va) = vb.

Without loss of generality, various forms of subgraph template S can be adopted to capture the
structural patterns of different semantics. Figure 1 (b) shows the Ego-AE on v1’s local neighborhoods
with the subgraph templates of triangle and chordal cycle. Specifically, we first identify all the
matched subgraphs with the anchoring nodes (white color) in subgraph templates fixed to the ego
node v1, and then the nodes covered by the matched instances are partitioned into Ego-AE sets based
on the corresponding automorphisms. We can observe that Ego-AE successfully differentiates the
roles of v1’s neighboring nodes based on the structural features.

However, GNN’s capacity in capturing Ego-AE is largely unknown in the literature. In fact, we prove
that the standard MPNN has fundamental limitations (see Section 3.3), while other GNN variants
focus on different graph properties which largely overlooked Ego-AE.

3.1 The Proposed GRAPE Model

We aim to propose a novel GNN model, i.e., GRaph AutomorPhic Equivalence network (GRAPE),
that is provably expressive in capturing Ego-AE. The overall framework is in Figure 2. In the sequel,
we describe them in details, and the complete algorithm of GRAPE is in Appendix C.1.

3.1.1 AE-aware Aggregator

Here, we design a novel AE-aware aggregators to learn from the Ego-AE sets in each node’s
local neighborhood with given subgraph templates. Specifically, we denote vt’s Ego-AE sets with
subgraph template Sl as Tl = {Al,1(vt), ...,Al,j(vt), ...,Al,ml

(vt)}, where Al,j(vt) is the set of
nodes corresponding to the j-th sets of Ego-AE nodes in Sl and ml is the total number Ego-AE sets.
Then, vt’s node embedding hk

l (vt) can be computed as follows:

hk
l (v) = MLP

(∑
j
βl,j ·

∑
vn∈Al,j(vt)

hk−1
l (vn)

)
, (2)

where βl,j’s are learnable weights that model the importance of Al,j(vt) and MLP(·) is a multi-layer
perception (MLP) function [21] that generates output embeddings.

Equation (2) is illustrated in Figure 2 (c). Differs from MPNNs, the proposed AE-aware aggregator
can explicitly differentiate the neighboring nodes with different structural roles by assigning different
weights βl,j to them. It allows GRAPE to capture the combination of important Ego-AE sets and
effectively models the interdenpendency among them. Note that GRAPE does not have an explicit
COMBINE function to account for the ego node’s self feature, since the ego node vt will always be
captured in a unique Ego-AE set, such as the A1,1 and A2,1 in Figure 2 (c).

3.1.2 Fusing Embeddings from Different Aggregators

To simultaneously capture different structural feature, we design a squeeze-and-excitation module
to fuse the node embeddings learned from a set of subgraph templates, which is inspired by the
channel-wise enhancement technique recently proposed in [22]. Specifically, by leveraging a set of
subgraph templates Ω = {S1, S2, ..., SL}, GRAPE can learn multiple AE-aware aggregators with
each subgraph template to capture different structural features respectively. The GRAPE can learn to
assign different weights αk for hk

l (vt) and generate the fused embedding for vt as following

hk(v) =
∑

l∈1,...,L
αk[l] · hk

l (v). (3)

Here, the learnable weights αk is computed as following

γk[l] =
1

N

∑N

n=1
MEAN(hk

l (vn)), αk = ReLU
(
W k

2 · ReLU
(
W k

1 · γk
))
, (4)

where γk[l] is the global average pooling on the node embeddings learned with subgraph template Sl,
W k

1 andW k
2 are two learnable matrices with RL×L size, and ReLU is the relu activation function.

5

Algorithm 1 Genetic Algorithm for Subgraph Template Optimization

1: Input graph G = (V, E); node feature X (v); probability of edge mutation, node mutation,
crossover = pe, pn, pc; size of gene pool B; subgraphs per gene L; elimination size Z;

2: genePool = InitPool(B, L);
3: for k ∈ 1, ...,K2 do
4: genePool = Mutate(genePool, pe, pn); /*Mutate Subgraph Templates*/
5: genePool = Crossover(genePool, pc); /*Generate Different Combinations*/
6: for gene ∈ genePool do
7: {T1, ..., TL} = Match(G, gene) /*Match on Graph.*/
8: accuracy = F ({T1, ..., TL},Θ) /*Evaluate Performance.*/
9: metricPool.append(accuracy)

10: end for
11: genePool = Select(genePool, metricPool, Z) /*Eliminate and Reproduce*/
12: end for
13: return Best performing gene ∈ genePool.

3.2 Genetic Search of Subgraph Templates

To reduce the barrier of hand-crafted subgraph templates, we formulate the automatic subgraph
template design problem as an optimization problem that aims to search for the best performing
combinations of subgraph templates Ω. Let the designed GRAPE in Section 3.1 be F with model
parameter Θ, which leverages the Ego-AE sets {T1, ..., TL} identified by Matching Ω on the given
graph G. This subsequently leads to the following bi-level optimization [7] problem:

max{Ω|G} F ({T1, ..., TL},Θ?) , s.t.
{
{T1, ..., TL} = Match(G,Ω)

Θ? =arg maxΘ F ({T1, ..., TL},Θ)
, (5)

However, the proposed optimization problem is difficult mainly for two reasons: 1) the search space
of subgraph templates is discrete and not differentiable; 2) matching subgraph templates in a large
graph is computationally expensive.

Our key intuition to address these challenges is that similar subgraph templates often have slightly
different pools of matched instances, which is likely to result in similar model performance. Therefore,
by gradually exploring the adjacent space of good performing subgraph templates we can effectively
avoid bad candidates. This inspires us to design a genetic optimization framework, which can
navigate through the discrete search space via the gradual mutations between generations. Moreover,
the similarities between iteratively searched subgraphs can be further leveraged to design efficient
subgraph matching algorithm. The details are described as follows.

3.2.1 Genetic Subgraph Template Search

We define gene population as a set of B genes, where each gene is a set of L subgraph templates.
The gene population is initiated as the most basic subgraph templates, i.e., edge. Then, the gene
population is optimized throughK2 rounds of genetic operations, which consists of mutate, crossover,
evaluate and select. The mutate operation allows us to explore slightly more complex subgraph
templates, i.e., the subgraph templates with one randomly added nodes or edges, which are denoted
as children subgraphs. Besides, the crossover operation will randomly exchange some subgraph
templates between two genes, which allows us to try different combinations of subgraph templates.
Moreover, the evaluate and select operations will identify and remove the worst-performing Z genes
and reproduce the best-performing genes. Finally, we use the subgraph templates encoded in the best
performing gene as the input of F . Thus, these operations allow us to gradually explore the adjacent
search space of promising genes and automatically optimize the subgraph templates. The genetic
algorithm is presented in Algorithm 1.

3.2.2 Efficient Subgraph Template Matching

We have the following Proposition 3.1 for the matched instances of the mutated children subgraph,
which can be leveraged to accelerate theMatch function in Algorithm 1. The proof is straightforward
since the children subgraphs are extended from parent subgraphs by randomly adding one node or

6

edge. In fact, the adding edge mutation effectively acts as a filtering mechanism on matched instances,
and the adding node mutation effectively grows the matched instances of parent subgraph. Therefore,
instead of computing the matched instances of children subgraph from scratch, the mutate operation
facilitates us to save significantly amount of computation by reusing and extending the matched
instances of the corresponding parent subgraphs. As a result, we propose an incremental subgraph
matching algorithm to leverage this proposition to accelerate subgraph matching process, which is
illustrated in Appendix C.2 in details.

Proposition 3.1. Given a graph G, a parent subgraph Sp and a children subgraph Sc, we denote Sp

and Sc’s match instances set asMp andMc, respectively. Then, we have mp ⊂ mc: ∃mp ∈Mp,
for ∀mc ∈ Mc. That is the matched instances of children subgraphs mc will always contain a
matched instance of parent subgraphs mp. Thus, mc can be efficiently identified by incrementally
extending mp.

3.3 Theoretical Analysis

Here, we aim to answer two questions: 1) how does the expressiveness of AE-aware aggregator relate
to previous works; and 2) is our designed AE-aware aggregator expressive enough to capture Ego-AE
feature. Previous researches mainly investigate the expressiveness of GNN through the scope of
graph isomorphism test, while it is expressive power on capturing AE feature is largely unknown.
Specifically, we have the following proposition about the limitations of standard MPNNs.

Proposition 3.2. There exist graphs that have different Ego-AE sets for a given node, but MPNNs in
(1) with arbitrary number of layers and hidden units cannot distinguish them.

We provide a constructive proof in Appendix B.1. Therefore, this proposition shows MPNNs have
fundamental limitations in modeling the structural role of each node’s neighbors. On the contrary, we
have the following theorem about the expressive power of the proposed AE-aware aggregator. The
theoretical proof of this theorem is provided in Appendix B.2. It shows our AE-aware aggregator is
provably expressive in capturing Ego-AE feature.

Theorem 3.1. For countable feature space X , let va and vb be two nodes with different Ego-AE sets.
The AE-aware aggregator in (2) can discriminate two nodes with learned distinct embeddings.

Remark 1. Previous works on GNN’s structural feature expressiveness mainly follow the hierarchy of
neighborhood isomorphic, i.e., can the GNNs differentiate two nodes that have different isomorphisms
in their local neighborhoods. However, graph automorphism is a special isomorphism that maps
a graph on to itself [35]. Therefore, Ego-AE is a stricter structural condition than neighborhood
isomorphic. That is two automorphically equivalent nodes are always neighborhood isomporphic,
while the converse statement is false even if the local neighborhoods expand to the entire graph [15].
As a result, previous works that aim to differentiate neighborhood isomorphic nodes with various
forms of WL tests, e.g., GIN [55] and k-GNN [38], cannot capture Ego-AE feature. Our GRAPE
model aims to fill in this gap.

4 Experiments

Datasets. Three types of real-world datasets are used, i.e., academic citation networks, social
networks and e-commerce co-purchase network.

• Citation networks [44]: We consider 2 widely used citation networks, i.e. Cora and Citeseer. In
these datasets, nodes represent academic papers and (undirected) edges denote the citation links
between them. Following the setting in previous work [24], we use each paper’s bag-of-words
vector as its node feature and the subject as its label.

• Social networks [47]: We use 5 real-world social networks which are collected from the Facebook
friendships within 5 universities, i.e., Hamilton, Lehigh, Rochester, Johns Hopkins (JHU) and
Amherst. The nodes represent students and faculties. Besides, we use one-hot encoding of their
gender and major as node feature, and set the labels as their enrollment years.

• E-commerce co-purchase networks [26]: This dataset was collected by crawling the music items
in Amazon website. If an item a is frequently co-purchased with b, the graph contains a directed
edge from a to b. We use the average ratings of items as node labels, and we set the node features
as the number of reviews and downloads.

7

Compared Methods. We compare our GRAPE with state-of-the-art GNN models, including
GCN [24], GraphSAGE [19], GIN [55], GAT [48], Geniepath [31], Mixhop [1], Meta-GNN [41] and
DE-GNN [27]. Specifically, GCN and GraphSAGE are two most popular GNN variants, and GIN
is customized to better capture structural property. Besides, GAT and Geniepath use the attention
mechanism to learn adaptive neighborhood for each node. Moreover, as more recent baselines,
Mixhop, Meta-GNN and DE-GNN learn node embeddings from higher-order structural information.
Specifically, Mixhop proposes difference operators on different hops of neighbors; Meta-GNN lever-
ages predefined subgraphs to identify higher-order neighborhood; DE-GNN encodes the shortest path
distance among nodes. To ensure fair comparison, we follow the optimal architectures as described
in previous works, and we use the official implementations released by the authors or integrated in
Pytorch platform [39].

Following the common design choices in previous works [24, 19, 48], we adopt a 2-layer architecture.
The hyper-parameter tuning and detailed experiment settings are discussed in Appendix D.1. Based
on the prior knowledge in related areas [3, 20], we design five subgraph templates (S?) for each
domain of datasets respectively, which are described in Appendix D.2. We use same subgraph
templates for Meta-GNN for fair comparison.

4.1 Benchmark Comparison

The classification accuracy of all methods are compared in Table 1. We observe that GRAPE is the best
performing model across all datasets. Specifically, the performance gains are most prominent in social
datasets. The improvements are smaller yet still significant on citation and E-commerce datasets.
One plausible explanation is the structural features play more important roles in social network
analysis. Following [49, 55], to investigate the influence of the node feature on the expressiveness of
GNN, we also evaluate the models on datasets that use all-ones dummy node features and randomly
initialized node features (see Appendix D.3 for details). We observe that GRAPE achieves consistent
performance gains independent of node features, which echos the findings in previous studies that
stronger topological feature can usually boost GNN’s learning performance [55, 59, 49].

Table 1: Classification accuracy on datasets with original node feature (%). The best-performing
GNNs are in boldface, and the second best ones are underlined.

Social Citation Ecomm.
Model Hamilton Lehigh Rochester JHU Amherst Cora Citeseer Amazon

GCN 19.4±2.0 24.0±1.2 21.1±1.5 20.5±0.8 17.0±1.4 86.9±1.7 74.8±1.0 47.4±1.3
GraphSAGE 20.5±2.0 17.8±2.2 18.5±1.8 17.1±2.5 17.8±1.6 85.6±0.9 70.3±1.3 19.6±1.0

GIN 23.7±3.1 19.0±2.0 21.2±0.9 21.5±3.5 26.3±3.8 86.5±1.2 72.6±1.5 48.5±2.5
GAT 18.3±2.1 22.7±0.9 20.2±1.6 19.8±1.4 17.7±2.2 87.1±2.1 74.6±1.7 39.4±0.8

Geniepath 19.1±1.5 22.9±1.0 21.7±1.1 19.8±1.4 17.5±1.7 81.2±1.5 69.8±1.7 57.9±0.8

Meta-GNN 22.9±1.8 24.3±2.3 23.2±0.5 27.3±2.9 23.5±2.2 86.8±1.1 74.4±1.1 56.6±1.2
Mixhop 19.1±0.1 23.2±0.2 18.0±0.0 18.3±0.1 17.0±0.1 80.9±0.7 72.9±0.8 57.4±0.8

DE-GNN 21.7±2.5 24.9±2.1 18.0±0.0 19.8±1.7 18.9±2.2 31.9±0.0 39.1±2.3 58.1±0.1

GRAPE 28.1±2.1 27.3±3.8 25.0±1.8 34.6±1.3 32.6±2.2 87.1±1.8 74.6±1.5 58.6±0.4

We show the computation cost of GRAPE and exemplar GNNs in terms of wall-clock training time
in Figure 3 (a). Note that both Geniepath and GAT leverage attention mechanism, which can only be
trained on CPU (the training with GPU causes the out-of-memory error). Meta-GNN is coupled with
complex graph sampling process and takes much more time to train. Thus, these methods are not
plotted. We observe GRAPE takes comparable time to train on the example dataset as the classic
GNN variants of Mixhop and GraphSAGE, which demonstrates the efficiency of our model. The
theoretical time complexity analysis is provided in Appendix C.3.

Besides, we also analyze the learned squeeze-and-excitation weights on each subgraph template and
Ego-AE set. From Figure 3 (b), we observe the weight is significantly skewed to edge template S1

in first layer, while it distributes more evenly on more complex templates in the second layer. One
plausible reason is that the model tend to keep the neighborhood large in the first hop to collect more

8

(a) Wall-clock time (b) Weights on subgraphs (c) Weights on Ego-AE sets

Figure 3: Illustrating the training time and the attention weights learned by GRAPE on Lehigh dataset.

feature. As a result, it assigns higher weights to the simplest template, i.e., S1 edge, in the first layer,
while it fuses more diverse structural feature in the second layer by assigning more even weights to
various subgraph templates. Figure 3 (c) shows the AE-aware aggregator can effectively distinguish
the neighboring nodes with different structural roles. For example, in Lehigh dataset, GRAPE assigns
lower weights to the Ego-AE set of ego node {u1} and higher weights to the AE set of neighbors
{u2} on edge template S1, while the weights distribute more evenly between {u1} and {u2, u3} on
triangle template S3. It suggests the connected neighborhood nodes are more important than ego
node on edge template S1, while they have similar importance on triangle template S3.

4.2 Case Study on AE-aware Aggregators

We conduct a case study to better understand how the AE-aware aggregators contribute to GRAPE.
Specifically, we first randomly select a node vc in Lehigh dataset that is wrongly classified by all
GNN variants except GRAPE, and then analyze its 2-hop neighborhood N 2(vc) and the neighboring
nodes that match triangle template S3 and 4-clique template S5 in Figure 4 and Table 2. We observe
that there are 3,600 nodes in N 2(vc) and they distribute evenly on multiple labels, which not only
might confuse MPNNs but also tend to cause over-smoothness problem [28]. On the other hand, both
templates S3 and S5 significantly reduce the neighborhood size, and the percentage of neighbors that
have same labels as vc increases from 19.7% in N 2(vc) (ranked 3rd) to 45.3%∼46.0% in A3,2(vc)
and A5,2(vc) (ranked 1st). It shows the AE-aware aggregator can successfully capture the “social
homophily” effect, where the nodes in tightly connected communities, e.g., triangle and 4-clique
structure, tend to have similar property [36].

Table 2: Number of nodes and most frequent labels in vc’s 2-hop neighborhood and Ego-AE sets.
nodes The percentage of top 5 labels (vc’s label is 11)

2-hop neigh. N 2(vc) 3,600 13 (23.2%), 12 (21.8%), 11 (19.7%), 10 (17.3%), 14 (12.9%)
Ego-AE set A3,2(vc) 46 11 (45.3%), 10 (17.2%), 12 (14.1%), 13 (12.5%), 9 (7.8%)
Ego-AE set A5,2(vc) 222 11 (46.0%), 12 (24.9%), 10 (13.8%), 13 (11.0%), 9 (2.8%)

(a) 2-hop neighborhood (b) Matched with S3 (c) Matched with S5

Figure 4: Case study of a node vc in Lehigh dataset. The ego node vc is positioned in the center and
the inset of (a) shows 100 samples. Node colors represent the ground-truth label.

9

4.3 Subgraph Template Search

We evaluate the genetic subgraph template search algorithm on the social dataset. Specifically, we
initialize GRAPE with three simplest subgraph template, i.e., edges. We compare our algorithm
with two baseline methods: 1) Genetic + ESU, which replaces the incremental subgraph matching
algorithm in our genetic framework with a widely adopted baseline method, i.e., ESU [51]; 2) Random
+ ESU: search randomly initialized subgraph templates with ESU. Besides, we also add a Bayesian
Optimization (BO) + ESU baseline, which uses the the classic Bayesian optimization to search for
optimal subgraph templates [56]. We use the BO model implemented in Hyperopt framework [4].
The optimization results are shown in Figure 5 and Table 3. Specifically, Table 3 shows the proposed
Genetic method (Genetic + INC.) outperform all three baselines across all the datasets. Our genetic
framework generates 3.0∼8.0% performance gain over the initialized simple edge template within
3000 seconds, which is 0.6∼2.8% higher compared with the best performing baseline. Moreover, the
optimized performance is comparable with the hand-crafted subgraph templates in Table 1.

Table 3: Classification accuracy (%) and time composition after 3000 seconds genetic optimization.
Hamilton Lehigh Rochester JHU Amherst

Classification
Accuracy (%)

Edge Template (Init.) 25.8 23.3 22.6 26.0 28.3
Random+ESU 29.2 24.5 24.8 26.0 28.3

BO+ESU 30.1 25.0 24.6 26.2 29.5
Genetic+ESU 31.0 27.0 25.0 27.5 33.0
Genetic+INC. 33.8 27.9 25.6 30.3 34.5

Time
Composition

(Seconds)

ESU Matching 648.7 889.4 2592.0 1389.2 1357.1
INC. Matching 24.0 55.3 134.3 129.9 124.6

Model Evaluation 20.9 33.7 45.0 31.5 18.1

Figure 5 shows a case study
of efficiency and searched
subgraph templates of Algo-
rithm 1. We observe that Al-
gorithm 1 can generate simi-
lar prediction accuracy com-
pared to the hand-craft sub-
graph templates in reasonable
search time. Moreover, these
subgraph templates are data-
dependent.

Figure 5: Effectiveness of the proposed genetic algorithm on the
Lehigh Dataset. Left: search efficiency; right: subgraph templates.

We also evaluate the performance of various hand-craft subgraph templates in Appendix D.4. We can
see that the classification accuracy on Lehigh dataset ranges from 22.6% to 26.1%, which show the
importance of subgraph templates and the need for automatic subgraph template search.

5 Conclusion

In this paper, we design a theoretical framework to examine GNN’s expressiveness through the lens
of Ego-AE. We prove MPNNs have fundamental limitations in capturing this important structural
property. Moreover, we propose a provably expressive GNN model, i.e., GRAPE, which effectively
extend GNN’s capability in modeling structural roles. We also design a genetic subgraph template
search algorithm to automatically optimize the model architecture. Experiments on real-world datasets
show consistent performance gain of the proposed methods. One potential limitation of our model is
the scalability to large-scale real-world graphs (see complexity analysis in Appendix C.3). However,
since our model is defined on localized Ego-AE, sampling technique similar to GraphSage [19]
can be designed to ensure the feasibility of computation overhead, which we will leave as a future
work. Besides, our paper proposes a general GNN framework and it could be customized for specific
application domains, e.g., molecular property prediction [50], to achieve additional performance gain.

10

Acknowledgments and Disclosure of Funding

This work was supported in part by the National Key Research and Development Program of China
under grant 2020AAA0106000, the National Natural Science Foundation of China under U1936217,
61971267, 61972223, 61941117, 61861136003. The authors declare no competing interest.

References
[1] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr

Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. arXiv preprint arXiv:1905.00067, 2019.

[2] Nesreen Ahmed, Ryan Anthony Rossi, John Lee, Theodore Willke, Rong Zhou, Xiangnan
Kong, and Hoda Eldardiry. Role-based graph embeddings. IEEE TKDE, 2020.

[3] Austin R Benson, David F Gleich, and Jure Leskovec. Higher-order organization of complex
networks. Science, 353(6295):163–166, 2016.

[4] James Bergstra, Dan Yamins, David D Cox, et al. Hyperopt: A python library for optimizing the
hyperparameters of machine learning algorithms. In Python in Science Conference, volume 13,
page 20. Citeseer, 2013.

[5] Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein. Improv-
ing graph neural network expressivity via subgraph isomorphism counting. arXiv preprint
arXiv:2006.09252, 2020.

[6] Charles J Colbourn and Kellogg S Booth. Linear time automorphism algorithms for trees,
interval graphs, and planar graphs. SIAM Journal on Computing, 10(1):203–225, 1981.

[7] Benoît Colson, Patrice Marcotte, and Gilles Savard. An overview of bilevel optimization.
Annals of operations research, 153(1):235–256, 2007.

[8] Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. A (sub) graph isomorphism
algorithm for matching large graphs. IEEE TPAMI, 26(10):1367–1372, 2004.

[9] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. arXiv preprint arXiv:2004.05718, 2020.

[10] Charles Darwin. The origin of species. PF Collier & son New York, 1909.

[11] Nima Dehmamy, Albert-László Barabási, and Rose Yu. Understanding the representation power
of graph neural networks in learning graph topology. In NeurIPS, pages 15387–15397, 2019.

[12] Claire Donnat, Marinka Zitnik, David Hallac, and Jure Leskovec. Learning structural node
embeddings via diffusion wavelets. In SIGKDD, pages 1320–1329, 2018.

[13] Agoston E Eiben, James E Smith, et al. Introduction to evolutionary computing, volume 53.
Springer, 2003.

[14] Martin G Everett. Role similarity and complexity in social networks. Social Networks, 7(4):353–
359, 1985.

[15] Martin G Everett, John P Boyd, and Stephen P Borgatti. Ego-centered and local roles: A graph
theoretic approach. Journal of Mathematical Sociology, 15(3-4):163–172, 1990.

[16] Noah E Friedkin and Eugene C Johnsen. Social positions in influence networks. Social
Networks, 19(3):209–222, 1997.

[17] Vikas K Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational
limits of graph neural networks. arXiv preprint arXiv:2002.06157, 2020.

[18] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In ICML, pages 1263–1272. JMLR. org, 2017.

11

[19] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In NIPS, pages 1024–1034, 2017.

[20] Robert A Hanneman and Mark Riddle. Introduction to social network methods, 2005.

[21] Kurt Hornik, Maxwell Stinchcombe, Halbert White, et al. Multilayer feedforward networks are
universal approximators. NN, 2(5):359–366, 1989.

[22] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In CVPR, pages 7132–7141,
2018.

[23] Hong Huang, Jie Tang, Sen Wu, Lu Liu, and Xiaoming Fu. Mining triadic closure patterns in
social networks. In WWW, pages 499–504, 2014.

[24] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In ICLR, 2016.

[25] Johannes Klicpera, Janek Groß, and Stephan Günnemann. Directional message passing for
molecular graphs. arXiv preprint arXiv:2003.03123, 2020.

[26] Jure Leskovec, Lada A Adamic, and Bernardo A Huberman. The dynamics of viral marketing.
ACM TWEB, 1(1):5–es, 2007.

[27] Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design provably
more powerful neural networks for graph representation learning. In NeurIPS, volume 33, 2020.

[28] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In AAAI, 2018.

[29] Zhi-Hao Lin, Sheng Yu Huang, and Yu-Chiang Frank Wang. Learning of 3d graph convolution
networks for point cloud analysis. IEEE TPAMI, 2021.

[30] Yixin Liu, Shirui Pan, Ming Jin, Chuan Zhou, Feng Xia, and Philip S Yu. Graph self-supervised
learning: A survey. arXiv preprint arXiv:2103.00111, 2021.

[31] Ziqi Liu, Chaochao Chen, Longfei Li, Jun Zhou, Xiaolong Li, Le Song, and Yuan Qi. Geniepath:
Graph neural networks with adaptive receptive paths. In AAAI, volume 33, pages 4424–4431,
2019.

[32] Pablo Ribalta Lorenzo, Jakub Nalepa, Michal Kawulok, Luciano Sanchez Ramos, and
José Ranilla Pastor. Particle swarm optimization for hyper-parameter selection in deep neural
networks. In GECCO, pages 481–488, 2017.

[33] Francois Lorrain and Harrison C White. Structural equivalence of individuals in social networks.
Journal of Mathematical Sociology, 1(1):49–80, 1971.

[34] Joseph J Luczkovich, Stephen P Borgatti, Jeffrey C Johnson, and Martin G Everett. Defining and
measuring trophic role similarity in food webs using regular equivalence. Journal of Theoretical
Biology, 220(3):303–321, 2003.

[35] Brendan D McKay and Adolfo Piperno. Practical graph isomorphism, ii. Journal of Symbolic
Computation, 60:94–112, 2014.

[36] Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather: Homophily in
social networks. Annual review of sociology, 27(1):415–444, 2001.

[37] Mark S Mizruchi. Cohesion, equivalence, and similarity of behavior: A theoretical and empirical
assessment. Social Networks, 15(3):275–307, 1993.

[38] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural
networks. In AAAI, volume 33, pages 4602–4609, 2019.

[39] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. In NeurIPS, pages 8024–8035, 2019.

12

[40] Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. struc2vec: Learning node
representations from structural identity. In SIGKDD, pages 385–394, 2017.

[41] Aravind Sankar, Xinyang Zhang, and Kevin Chen-Chuan Chang. Meta-GNN: Metagraph neural
network for semi-supervised learning in attributed heterogeneous information networks. In
ASONAM, pages 137–144, 2019.

[42] Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Approximation ratios of graph neural
networks for combinatorial problems. In NeurIPS, pages 4083–4092, 2019.

[43] Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph neural
networks. In Proceedings of the 2021 SIAM International Conference on Data Mining (SDM),
pages 333–341. SIAM, 2021.

[44] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. AI Magazine, 29(3):93–93, 2008.

[45] Malcolm K Sparrow. A linear algorithm for computing automorphic equivalence classes: the
numerical signatures approach. Social Networks, 15(2):151–170, 1993.

[46] Jacobo Torán. On the hardness of graph isomorphism. SIAM Journal on Computing, 33(5):1093–
1108, 2004.

[47] Amanda L Traud, Peter J Mucha, and Mason A Porter. Social structure of facebook networks.
Physica A: Statistical Mechanics and its Applications, 391(16):4165–4180, 2012.

[48] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. Technical report, arXiv preprint arXiv:1710.10903, 2017.

[49] Xiao Wang, Meiqi Zhu, Deyu Bo, Peng Cui, Chuan Shi, and Jian Pei. Am-gcn: Adaptive
multi-channel graph convolutional networks. In SIGKDD, pages 1243–1253, 2020.

[50] Yaqing Wang, Quanming Abuduweili, Abulikemu Yao, and Dejing Dou. Property-aware relation
networks for few-shot molecular property prediction. In NeurIPS, 2021.

[51] Sebastian Wernicke and Florian Rasche. Fanmod: a tool for fast network motif detection.
Bioinformatics, 22(9):1152–1153, 2006.

[52] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE TNNLS, 2020.

[53] Lingxi Xie and Alan Yuille. Genetic cnn. In Proceedings of the IEEE international conference
on computer vision, pages 1379–1388, 2017.

[54] Yaochen Xie, Zhao Xu, Jingtun Zhang, Zhengyang Wang, and Shuiwang Ji. Self-supervised
learning of graph neural networks: A unified review. arXiv preprint arXiv:2102.10757, 2021.

[55] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

[56] Quanming Yao, Mengshuo Wang, Yuqiang Chen, Wenyuan Dai, Yu-Feng Li, Wei-Wei Tu,
Qiang Yang, and Yang Yu. Taking human out of learning applications: A survey on automated
machine learning. arXiv preprint arXiv:1810.13306, 2018.

[57] Xin Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87(9):1423–1447, 1999.

[58] Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnn explainer:
A tool for post-hoc explanation of graph neural networks. arXiv preprint arXiv:1903.03894,
2019.

[59] Jiaxuan You, Rex Ying, and Jure Leskovec. Position-aware graph neural networks. In ICML,
pages 7134–7143, 2019.

[60] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov,
and Alexander J Smola. Deep sets. In NIPS, pages 3391–3401, 2017.

13

