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Abstract—With the ever-increasing urbanization process, systematically modeling people’s activities in the urban space is being
recognized as a crucial socioeconomic task. It is extremely challenging due to the lack of reliable data and suitable methods, yet the
emergence of population-scale urban mobility data sheds new light on it. However, recent works on discovering activity patterns from
urban mobility data are still limited in terms of concisely and specifically modeling the temporal dynamics of people’s urban activities. To
bridge the gap, we present a State-sharing Hidden Markov Model (SSHMM), a novel time-series modeling method that uncovers urban
dynamics with massive urban mobility data. SSHMM models the urban dynamics from two aspects. First, it extracts the urban states
from the whole city, which captures the volume of population flows as well as the frequency of each type of Point of Interests (Pols)
visited. Second, it characterizes the urban dynamics of each urban region as the state transition on the shared-states, which reveals
distinct daily rhythms of urban activities. We evaluate our method via large-scale real-life mobility dataset. The results demonstrate that
SSHMM learns semantics-rich urban dynamics, which are highly correlated with the functions of the region. Besides, it recovers the
urban dynamics in different time slots with RMSE of 0.0793 when only learn limited states for the whole city, which outperforms the

general HMM by 54.2 percent.

Index Terms—Urban computing, time-series analysis, urban dynamics, mobility, hidden markov model

1 INTRODUCTION

HE rapid urbanization process has been nurturing large
Tand complex urban systems worldwide. It is estimated
that over the next thirty years, more than two-thirds of the
people will dwell in modern cities [1]. Therefore, under-
standing urban dynamics, namely, the temporal patterns of
urban activities, is fundamental for tackling the increasingly
prominent urban challenges, e.g., excessive energy con-
sumption, air pollution, and traffic congestion [37]. How-
ever, citizen’s activities in the urban space are extremely
complex and highly volatile, which poses challenges to
model temporal urban dynamics precisely and systemati-
cally. Traditional approaches rely on expensive manual sur-
veys, yet the understanding is still coarse-grained and
limited in geographical scope [2].

Fortunately, the advent of the ubiquitous mobile Internet
and Location-Based Social Networks (LBSNs) makes it pos-
sible to collect population-scale urban mobility data, which
sheds new light on this open problem. These datasets con-
tain semantic-rich human mobility information, which
includes the timestamps, location coordinates as well as the
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visited Points of Interest (Pols). Previous works have dem-
onstrated that the daily movements of citizens can be uti-
lized to infer the functions of urban regions [30], [33], and
the patterns of urban activities (e.g., working, resting, com-
muting, etc.) are closely correlated with urban mobility pat-
terns [29], [34], which indicates the feasibility of leveraging
urban mobility data to model urban dynamics.

In this paper, we aim to harness the power of massive
urban mobility data to deepen the understanding of urban
dynamics. The research problem is non-trivial mainly for
three reasons: (1) Urban mobility behaviour is a noisy repre-
sentation of urban activities. Similar urban activities may
correspond to slightly different mobility patterns, e.g., cen-
tral business districts may experience different population
flow during the working hours of different days. Therefore,
it is difficult to robustly and accurately infer the underlying
urban activities from the empirical observation of urban
mobility behaviour. (2) The semantic-rich mobility data, i.e.,
check-in data on LBSNSs, is sparse in urban space, especially
in sparsely populated areas. The sparse and unevenly dis-
tributed mobility data poses significant challenges to extract
reliable patterns of urban dynamics for different regions
in urban systems. (3) Modern cities are complicated socio-
economic systems, where each urban region possesses differ-
ent urban dynamics due to its unique activities. Therefore, it
is challenging to interpret the identified urban dynamics and
reveal the underlying mechanisms.

Motivated by these challenges, we propose a novel State-
sharing Hidden Markov Model (SSHMM) to reveal the
urban dynamics. The key insight of SSHMM is that the
mobility behavior of an urban region can be viewed as a
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probabilistic observation of the underlying urban activity,
and similar activities have the similar probability distribu-
tion of the observations across different urban regions since
they are likely conducted by similar population. Specifically,
the model learns the urban dynamics of a region as transi-
tions between hidden states, where each state maps to a cer-
tain urban activity. The corresponding mobility behavior is
generated from the hidden state through an emission proba-
bility function, which allows the same urban activities to be
mapped to slightly different mobility behavior and effec-
tively addresses the problem of noisy mobility data. More
importantly, SSHMM facilitates different urban regions to
share the same set of hidden states because the similar urban
activities in different regions correspond to similar mobility
behavior patterns. Therefore, it addresses the challenge of
data sparsity by allowing different regions to share parame-
ters, which fully exploits the correlation between different
regions. Finally, as a generative model, apart from predicting
the mobility behavior of urban regions, SSHMM can also
characterize the urban dynamics as hidden state sequences.
Based on the identified state sequences, we further design
an unsupervised clustering analysis technique to reveal their
correlation with urban functions (i.e., land use) and provides
a meaningful interpretation of the urban dynamics.
The contributions of our research are three-fold:

1)  We propose a novel urban dynamics revealing
model SSHMM. It can robustly and accurately infer
the underlying urban activities from noisy and
sparse urban mobility data by sharing model param-
eters across different regions. In addition, it achieves
qualitative representations of urban dynamics as the
transition patterns between urban activities. Com-
pared with previous works, it can model urban
dynamic in a concise and probabilistic way.

2) We propose an effective and efficient algorithm to
infer the parameters of our model. By splitting the
long observations into shorter ones and updating the
parameters in parallel, we reduce the training time
of learning R groups of parameters to that of only
one group, where R is the number of regions.

3) We evaluate our method using a population-scale
mobility dataset, which demonstrates that our
SSHMM model learns meaningful and explainable
urban dynamics. Besides, the activity regularities
can be recovered with an error of 0.0793 by 100
states, outperforming the baseline by 54.2 percent.
We also achieve RMSE for population flow predic-
tion of 0.195 and Top3-accuracy for Pol popularity
prediction of 41.4 percent, outperforming the base-
line method by 16 and 8 percent respectively.

This paper is an extension of our previous conference
paper [28]. In this paper, we further offer the following new
contributions. First, we design a system framework, which
consists of data collecting and preparing module, feature
extracting module, model learning module as well as applica-
tion module. The pipeline of the complete framework makes
our work more practical and systematic. Second, we provide
the detailed theoretical derivation of the model parameter
inference to bring more valuable takeaways for the readers
who plan to apply the model in their research problems. Last
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but not least, we propose an effective parameter updating algo-
rithm to continuously learn the model when new data avail-
able, which shows a significant performance improvement in
terms of both activity recovery and prediction.

2 RELATED WORK

2.1 Urban Dynamics Modeling

The development of the city has witnessed a great series of
studies on urban dynamic problems. Urban dynamics, gener-
ally defined as how sociological indicators (e.g., the popula-
tion, the land use) change over time [10], can be divided into
two aspects. One is to investigate the urbanization and sus-
tained economic growth [19] via the dataset with a long
period, while another focuses on characterizing human daily
activity rhythms in the city with more fine-grained time gran-
ularity [2], [21], which is more relevant to our research. Yuan
et al. [33] proposed an LDA model to detect different func-
tional regions in a city through the GPS trajectory and Pol.
Zhang et al. [37] used the geo-tagged social data to model
urban activities with more attention paid to temporal dimen-
sion, which demonstrated that the activity volume of an area
is not uniformly distributed across time and different areas
have different activity volume temporal distributions.
Sohiance et al. [2] built activity time series for different cities
and different neighborhoods within the same city to identify
different dynamic patterns via the geo-tagged data from Twit-
ter. By clustering the activity time series, they found that close
neighborhoods tend to share similar rhythms. Mireanda et al.
[21] captured the spatio-temporal activity in a city across mul-
tiple temporal resolutions and visualized different activity
levels in different time. Song et al. [25] clustered time slots into
different urban states by their population moving volume.

In this problem, we regard urban activities as time series
and aim to reveal the daily regularity hidden in them. Differ-
ent from the existing works based on statistical analysis [2]
and data visualization [21], we propose a specific model
achieving understanding and prediction at the same time.
With the similar data, i.e., human mobility and Pols, and spe-
cific LDA model, our goal to reveal the dynamic regularity is
different from Yuan et al.’s work to find urban functions [33].
On top of the application of urban function inference, our
SSHMM can also applied in human activity prediction.

2.2 Hidden Markov Model and its Application

Hidden Markov Model (HMM) is a statistical Markov
model in which the system being modeled is assumed to be
a Markov process with unobserved (i.e., hidden) states [23],
which has been widely used in time series analysis and pre-
diction in the past years. In HMM, model mixture and
parameter sharing are very helpful to deal with increasingly
complex tasks [13]. One of the well-known mixture methods
is the Gaussian mixture model-based HMM (GMM-HMM).
GMM is a parametric probability density function repre-
sented as a weighted sum of Gaussian component densities,
while GMM-HMM assumes that a set of Gaussian compo-
nents can represent a distribution based on the spectral
envelope [11]. The second example is shared-distribution
HMM, where clustering is carried out at the distribution
level for parameters sharing and output distributions are
shared with each other if they exhibit acoustic similarity
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[15]. Another model tied-mixture HMM uses both mixture
and parameter sharing, which belongs to semi-continuous
HMM. It is recognized as a useful complexity reduction
method, because of its ability to maintain modeling accu-
racy of large-mixture probability density functions (PDF) by
enforcing PDF sharing [4], [14], [18]. One emission-sharing
HMM named HTMM also has been proposed recently [12]
for document topic modeling. It assumes that the topic
matrix is shared among all documents, meaning all the
given HMMs share the same emission probability. Yet, each
document has a specific topic distribution, whereas each
document has its own topic transition probability.

SSHMM is also a kind of parameters sharing HMM. While
different from previous works, we design it to automatically
learn a set of states for the continuous observations and no fol-
lowing clustering is conducted to force the parameters shared.
Both based on the Gaussian emission function, we use multi-
dimensional Gaussian instead of GMM. With a similar idea of
state-sharing while transition-independent, our model differs
from HTMM [12], because HTMM can only deal with discrete
distribution but our observations are continuous. Therefore,
we derive a novel EM algorithm to infer model parameter. In
addition, though HMM has been successfully applied to the
topic of mobility modeling, most of the work concentrated on
individual mobility prediction [20], [35], [39], and we are the
first to apply it in urban dynamics modeling.

3 OVERVIEW

3.1 Problem Description

HMM is a generative model, which assumes that the obser-
vation sequence is generated by a hidden state sequence. To
apply this model to urban dynamics problem, we regard
human aggregated activities in different regions as time
series. More specifically, we extract mobility behaviours in
different time slots as observation sequences, and we aim to
reveal urban dynamics in terms of human daily life rhythms
by the corresponding hidden state sequence. Before for-
mally define our investigated problem, we give the defini-
tion of mobility behaviour observation as follows,

Definition 1 (Mobility Behaviour Observation). The
mobility behaviour sequences of region r is a time-ordered
sequence O, = [O,1, Oy9,...,0, ], where O,,, is a tuple of
length L, standing for the observation in n-th time slot. It con-
tains two parts: (1) {0y 01,002, Orn s} denotes the number of
people who arrive at, leave from and stay in this region in this
time slot. (2) {0 p.4, 0005, ---,0pn1} denotes the check-in fre-
quency of different categories of Pols.

The motivation for choosing these two types of features as
the observation is very intuitive. On the one hand, how many
people leave from, arrive at and stay in each region, represents
the daily commute pattern and activity level, is crucial for urban
dynamics modeling [6], [32]. On the other hand, since dynamic
pattern has close relation with the land use, while the Pols are
static, therefore, we utilize the check-ins, which reflects people’s
dynamic demand for a region’s function [38]. As a consequence,
these two aspects can give deep insights into urban activities.

Now, we formulate the urban dynamics understanding
problem. Given the mobility behaviour observations of a
group of regions in the city, we aim to (1) discover hidden
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Fig. 1. An illustration of the SSHMM, where two kinds of dynamics for
region 1 and 2 are generated from the same set of states and each state
is presented by a unique color.

states represented by the volume of population and the vis-
iting frequency of different Pols to understand the intrinsic
life modes in the city; (2) reveal urban dynamics repre-
sented by hidden state sequences to understand the daily
life rhythms and their correlation with urban functions; (3)
characterize dynamic regularity by learning state transition
probability to achieve dynamic prediction.

3.2 Model Description

Our problem can be simply abstracted into that when nei-
ther the hidden state sequence nor the underlying probabili-
ties are known—we only have access to a sequence of
observations, and our job is to reveal the HMM structure.
As such, the HMM we need to infer is specified as:

Definition 2.1 (SSHMM). HMM is parameterized by two
parts, one is the state transition parameter characterizing how
the states transit and the other is the state emission parameter
characterizing how the observation generated by the state.
SSHMM contains R groups of HMMs for R groups of observa-
tion sequences. However, these HMMs share state emission
parameter, which means all the observations are generated by
the same set of hidden states.

Definition 2.2 (Hidden state set). We define the hidden state
set including K hidden states as S = {s1, sa,..., sk}, where
each state describes L dimensional features.

Our model is based on the general assumptions of HMM,
where each observation O, , is generated from a hidden state
sy, and the n-th hidden state s, merely depend on the previ-
ous state s,,_;. In our problem, we use one HMM denoted by
0, to model the dynamics of r-th region, therefore we need to
learn R groups of transition parameters for R regions in the
city. Fig. 1 gives the illustration of our model. There are two
observation sequences for region 1 and 2, so we learn two
HMMs for them respectively. These observations are gener-
ated by the same set of states, where each state is presented by
a unique color. These states appear in different time slots,
which reveals the different dynamics of these two regions.
Inspired by previous works indicating that different regions
present similar states in different time slots [9], [21], [27], we
intuitively share the states for the whole city. However, as
shown in [33], although topics in human mobility and Pol are
common, each region has its own topic distribution, which
means we should learn unique state transition for each region.
That is why we only share state on emission models instead of
sharing transition probability.
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SSHMM Learning

Road segment

characterizing
Temporal feature

extractions Application
Human mobility I
I behaviour observations :

Fig. 2. The framework of our system.

Consequently, the key insights of sharing states are two
aspects. On the one hand, we investigate the dynamics of
the city, where life modes (i.e., sleeping, working, etc.) is
limited and similarities in different regions exist objectively.
Therefore, it is reasonable to use a common state set and it
also makes the following dynamics analysis through state
sequences easier. One the other hand, massive mobility
data especially the semantic check-in data is sparse and
mobility behaviour is a noisy representation of urban activi-
ties, which indicates that by sharing states we can achieve
more robust and accurate models.

3.3 System Overview

To learn and apply our propose SSHMM in the real world,
we design a system that consists of data collecting and pre-
paring module, feature extracting module, model learning
module as well as application module. Along this pipeline,
our model is more practical. Fig. 2 summarizes this system
framework. We first apply a map segment method [33] to
obtain the geographical boundaries of each region formed
by the road network. Then we extract the temporal feature,
i.e., the population flow and check-in frequency in each
time slot for each region and normalize them as mobility
behaviour observations. After that, we learn SSHMM to dis-
cover the city states and reveal the dynamics. Besides
understanding the behind dynamic regularity, SSHMM can
be further applied for urban function identification and
human activity prediction.

4 METHODOLOGY

In this section, we introduce the implement of our system
according to the pipeline as shown in Fig. 2.

4.1 Data Preparing

We first adopt the map segment method [33] to obtain the
geographical boundaries of each region formed by the road
network. In view of the urban mobility patterns and life-
styles, those regions are used as a unit to reveal the dynam-
ics instead of simply dividing the city into grids. Then, we
process individual trajectory and check-in dataset into
aggregated mobility behaviour of each urban region.

To share the states in the city, we normalize mobility
behaviour observations to eliminate the problem regarding
the difference in population between regions. For mobility,
i.e., the number of arriving, leaving and staying of citizens, we
directly conduct min-max normalization for each region over
different time slots respectively. For check-ins, i.e., the visit
frequency of Pols, we first compute the TF-IDF weights based
on the region-Pol matrix in each time slot [22]. Then, for each
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Fig. 3. Normalized mobility behaviour observations for Tsinghua Univer-
sity, Beijing from April 1st to 7th, 2018.

region, we conduct the min-max normalization on the TF-IDF
weights over different time slots. After normalization, each
dimension of the mobility behaviour observations is rescaled
to 0 — 1. Fig. 3 gives an example of the normalized mobility
behaviour observations. From 3(a) we can observe that both
the volume of population flow and the check-in frequency
change from morning to night every day.

After pre-processing, we regard the aggregated activities
in the city as normalized time series. As defined in Defini-
tion 1, we present the mobility behaviour observations for R
regions in the city as O = {01,0s,...,0,,...,0r} with O,
denoting the observations for r-th region.

4.2 SSHMM Learning

To reveal urban dynamics by the hidden states sequence,
the first step is to learn the model parameters by maximiz-
ing the probability of the observation sequences given the
model. Since SSHMM is a novel model proposed by us,
how to learn the model parameters reasonably and effec-
tively, and how to apply it in the real-world large-scale
dataset are two difficulties we face. To clear introduce our
solution, we first give the model design. After that, we pres-
ent the parameter inference process from theoretical deriva-
tion to programming implementation. Last but not least,
considering that new data can be continuously collected, we
introduce how to apply and update our model online.

4.2.1  Model Design

In this section, we give the basic assumptions and the formula
definition. When generating o, ,, from s,, we assume that the
emission probability is Gaussian distribution, i.e., p(o; ,,|s,) =
N(0rnility, on). The reason to chose the Gaussian is intuitive:
W, describes the fundamental feature of s,,, while the corre-
sponding observations generated by s, is slightly different
from the mean pu, with the difference controlled by the vari-
ance o,.To make the following parts more readable, we con-
sistently use the symbols for description as shown in Table 1.

In summary, we build the SSHMM parameterized by R
groups of parameters 6 = {61,09,...,6,,...,0g} with 6, =
{m,, A;, u,0} denoted for r-th region, where

1) x, € RE*! denotes the initial distribution over K
hidden states, i.e., 7, = p(s1 = k)(1 < k < K);

2) A, € RE*E denotes the transition probabilities
among the K hidden states. If (n — 1)-th state is
Syp—1 = j, then the probability for n-th state s, to be k
is given by A, j i, i.e.p(s, = kl|sn—1 =J) = Arjws
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TABLE 1

Notation and Description
Symbol Description
R r-th region,number of regions
N n~th time slot, number of time slots
1, L I-th feature, dimension of features
0,0 Observation in one time slot, observation sequence
s, Hidden state in one time slot, hidden state set
0 HMM parameter set, including =, A, i, o
b1 Hidden state initial probability
A Hidden state transition probability
o Mean and variance of the Gaussian distribution

3) u,o € RE*L denotes the mean and variance of obser-
vation probability, i.e., p(O,,|s, = k) = H, " \/W
exp(—

(0,.,,”_]7;1,1‘..’1)2)
20/&’1

It is worth noting that we do not use the subscript = to
distinguish u,o of different HMMs because in SSHMM
they are determined by the same common state set.

4.2.2 Parameter Inference

To infer the parameters, we use Expectation-Maximization
method (EM) as the solution. Since SSHMM shares the same set
of hidden states, the existing famous Baum-Welch algorithm
cannot be applied directly. To address this, we give a new
parameter derivation process, and in order to show it more
clearly, we first give some definitions and theorem as follows.

Definition 3.1 (Log likelihood L(0)). Let the log likelihood
for r-th region L(6,) =Inp(O,|6,) = > ¢Inp(O,]S,0,)
p(0,|0,). Therefore, the log likelihood for all observation
sequences L(0) can be derived as follows,

L(6) = Inp(0]f) = Zlnp(ow-, 0)p(0|6)

721111_[1) (0,5,6,)

p(0,]S,6,)p

p(0,16,)

(1)
(0,16,)

Definition 3.2 (Q-function Q(6,6")). Let the Q-function for
r-th region Q(6,,6') = ¢p(5]|0;;6.) Inp(O;, S|0,), where
0, means the old parameter. Therefore, the total Q-function for
regions Q(6,0") can be derived as follows,

Q(6,6") Zlnp 0|8,6)p(S|0, 6"

R

*Zlnnp (O,]5,6,)

r=1

S|OT7 r)
(2)

[
Mm

> Inp(0,|5,6,)p(S|0;, 6.)
S

r=1

[
M=

Q(6r,6,.)-

I
-

”
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Theorem 1. To achieve the maximized log likelihood, parameters
can be updated by maximizing Q(0,6") step by step.

Proof. For each HMM parameterized by 6,, Baum and his
colleagues have proven that maximization of Q(6,,6.)
leads to increased likelihood, i.e,

m;tXQ(@n 6,) = p(0:16,) > p(O:[6;). ®)

Eventually the likelihood converges to a critical point.
Since as derived in (2) and (1),

>

Q0,6 = _Q(6,,6.), L(6) = ZR:L(QT). (4)

r=1 r=1

Take the summary of the Q-function for all regions, the
following result from (3) could be obtained,

R R
> max Q(6, 6,) = > _p(O,l6}) = p(O,[6,). ®)
r=1 T r=1

Combine (4) with (5), we can derive the relationship
between Q-function and log likelihood as follows,

max Q(6,6") = p(0]6") > p(0|h). ©)
ot

This is to say, by maximizing Q(6,6"), the likelihood can
converge to its maximum. O

Since p(0, ]9, 6") can be calculated as follows,

p(Or|Sa 9:) = nr,kp(Or,1|37yl) . p(sﬁ?‘Sr,l)p(Or,2|5r,2)

(sp.n|8rn=1)P(Or N |8r.n)-

(7

Replace (7) into the (2), the Q-function can be further
unfolded as follows,

Q0,0 :ZZp S|0,,6") In 7, .

r=

=

2

-1

+ p S|Or797)lnp =5n+1|5n) 8

Il
—_

7i

- 1
Mz

%
+3 3> p(810;,6.) np(Or i, 0),
5
From (8), we can observe that the parameters 7, A (.e.,
p(Sn+1lsn)), and {i, o} to be optimized appear separately in
three items in the upper formula, so it is only necessary to
maximize each item separately. In addition, the above three
terms satisfy the equality constraints, so the results can be
deduced by Lagrange multiplier method.

We give the detailed parameter derivation as follows.
Based on Baum-Welch algorithm, the forward distribution
«(s,,) and backward distribution f(s, ) are first defined as
follows,

I
—

7" n=1

a(sr,n) - p(Or,n‘Sr,n) Z a(Sr,n—l)p(sr,'N,'S'r,n—l)a

Srin—1

Z :3 Sr 1L+1

Srn+1

9)

57 n 7 n+1 |57'.n+1 )p(sr,7L+1 ‘ST‘,H)v
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where (x(sr,l) = nr,kp(onl‘sﬁl = k) and ﬂ(S’I‘,N = k) =1L Then/
two probability can be derived from & and B as follow,

V(S'r.,n) = p(sr,n|07') = a(sr_,l)ﬁ(sr,n)/p(OTL
§(Sr,n, S'r’,n+1) = p(sr,nl ) 5r:n|OT)
= o(8r,0-1)P(Srn[8r.0-1) P(Orn|8r.0) B(S1.0) /P(Or),
(10)

where p(0;) =}, . o(spp)-

Since the three terms in (8) are independent, it is easy to
optimize the parameters 7, A and {u, o} separately. Due to
the limited space, we omit the detailed procedure here.

Finally, the parameters can be inferred as follows,

(t+1)

rk T }/(sff )
1 N
Aff;—li 757]2‘5 rm—19 rn
R N (11)
H’g;d) = é Z Z y(sl'f,n)07‘,n,/>
r=1 n=1
) _ L N~k (141)\2
Kl T F_Z Z Y(8r)(0rng — M )

K

,_.
I
—

r=1n

Whererk *27 1271 1J/ 7‘71) 2) :Zn 221 16( rn 1 Tn)

Algorithm 1. SSHMM Parameter Learning

1 Input: Observations O = {Oy, O, . ..
tions MaxIter;

2 Output: 0, = {m,, A, u,0} V1 <r < R;

3 Procedure:

4  Initialization: tf 0, 1n1t1a1710 =1/K,

AE-]‘k =1/K, Mk, = random(0, 1),
aioz) = random(0,0.1),V1 < j,k< K,1 <1< L.
5 whilet < Mazlter do

,Or}, Maximum Itera-

6 forw=1,2,...,Wdo
7 E-step: V1 < r < R, calculate a(s,,,)""™, B(s..)" ",
Y(sra) Y, f(s,‘_, )™ in parallel based on old
parameters 6\") utilizing the w-th subsequence of O,.
8 M-step: V1 <r < R, update = fkﬂ) and A,'ﬁ in
parallel.
9 Update u;"”, of7" utilizing y(s,,,)" ™", &(s,)" "
vl <r<R.
10 end
11 Updatet:t =t +1
12 end
13

4.2.3 Model Implement

The derivation of the parameter has been achieved, how-
ever, the process could be inefficient and inefficient when
applying it to the large-scale mobility dataset due to two
aspects. First is about observation sequence length N. A
large dataset means long-time observation with a large V.
However, with the increase of N, the computation of « and
B becomes more complicated until the result exceeds the
max value of the floating-point numbers that the computer
can store. The second is about the total number of states K.
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The computational complexity of Baum-Welch algorithm is
O(RNLK?) as we need R groups of parameter, where R is
the number of regions, N is the length of observation
sequence, L is the dimension of each observation and K is
the number of states. The time complexity is quadratic in k&,
rendering it inefficient for large K. However, if K is not
large enough, the model is unable to capture all the
dynamic patterns in the city, thus reducing the representa-
tional ability of the model.

To overcome these problems, we first split the long obser-
vation sequences into several shorter subsequences of length
N. In each round, we use only one subsequence. By doing
this, we can not only utilize all the data for parameter learn-
ing but also avoid float-point number exceeding. Second,
from (11), we can observe that the updating of =, ; and A4, ;.
for region r in independent. Thus, we conduct their updating
in parallel, which reduces the training time to that when only
learning one group of parameters.

The detailed procedure is shown in Algorithm 1. In each
iteration, we run EM-steps for W rounds, and in each
round, we fed the subsequences of length N into the model.
After calculating the a(sr n)<,+1 , B(s, n)<t+1 y(s,‘n)(HD

5(5,3,1)(”1), n(t,:l and A : ,i in parallel for all the regions in

each round, we update the state parameters M(TH) a,(fjl).

4.2.4 Continuous Learning

In most real-world applications, data incrementally avail-
able over time or data come from non-stationary distribu-
tions. In our problem, on the one hand, mobility data are
continuously collected. On the other hand, existing Pols
have their life and new Pols will appear, especially the com-
mercial and food Pols. As such, how to utilize the new data
to efficiently and effectively improve model performance is
also our concern.

To avoid learning from scratch, SSHMM is initialed by max-
imizing the log-likelihood of the old data. Then, when new
data is available, we fine-tune the model to maximize the log-
likelihood on the new data. We denote the new data as O/,
and then the likelihood can be written as L(6/) = Inp(O/|6).
We update the model when each subsequence with length N
is prepared. The updating role is the same in (11). We present
the algorithm as follows.

Algorithm 2. SSHMM Parameter Updating

1 Input: New observations O/, Old model 6;

2 Output: New model 6/ = {nf, Af uf o/};

3 Procedure:

4 Initialization: ¢ = 0, initial 6/ = .

5 whilet < Maxlter do

6 %only one new subsequence;

7 E-step: V1 < r < R, calculate a(s,,,,,)(Hl),
ﬂ( ‘;rn)(H—])/ y( )(H—l) f(sr,n)(H—l) based
on 0§17 utilizing O/.

8 M-step vl<r< R update 7, Hl) !

and

A W a0 v < <n
9 Updatet:t =t +1
10 end
11

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 02,2022 at 02:12:50 UTC from IEEE Xplore. Restrictions apply.



3474

4.3 Dynamics Characterizing

Based on the model 6, = {n,, A,, 1,0} obtained from the
above algorithm, the state sequences can be decoded by Viterbi
algorithm [26]. As a result, the dynamics can be revealed by the
state sequences. For a long sequence, the Viterbi algorithm also
suffers from similar problems arose in model learning. To this
end, we decode the hidden state sequence for each subse-
quence one by one. In addition, this process is independent for
each region, and thus we present the decoding algorithm for
one region as an example, which is illustrated in Algorithm 3.
For each subsequence, it is a dynamic programming algorithm
for finding the most likely sequence of hidden states. Conse-
quently, the hidden state sequences characterize urban dynam-
ics, and by aligning the state subsequence of each region, we
can reveal its dynamic regularity.

Algorithm 3. Viterbi Algorithm for State Sequence
Decoding

1 Input: Observation dataset O, = {O}, 0%,..., 0"}, Model 6;
2 Output: Hidden state subsequence for region r
S =S¥, 8, .., SN VI<w < W,
3 Procedure: '
4 forw=1,2,...,Wdo
5 (1) Initialization: n = 1, initial
8r1(k) = 7, (O |51 (K)),
lﬁm( ) 707V1 S k’g K

6 (2) Iteration:
7 forn=2,3,...,Ndo
8 Sr.n(k) = Hlax[srn 1( ) :]k]p( |9r n(k))/

¥, (k) = argmax;[8, ,—1(j)A ,Jk] Vi<k<K
9 end
10 (3)Last state: s}, = arg max;[8, x(j)]
11 (4)Backforward:

12 forn—Nle 2,...,1do
13 7 n w! n+1( rn+1)

14 end

15 end

16

4.4 Application
4.4.1 Urban Function Identification

Considering that regions with similar dynamic patterns
could have similar functions, we match the dynamics with
the functions by clustering the state sequence of different
regions via k-mediods algorithm [16]. In this clustering
algorithm, we define the distance of two sequences as the
sum of the euclidean distance of the mean of the two corre-
sponding states. The specific calculation is as follows,

Definition 4.1 (The distance between corresponding
states d(sin,Sjn)). d(Sin,Sjn) is the distance between the
state of i-th and j-th region in n-th time slot. It is the euclidean
distance between the mean value vector of Gaussian distribu-
tion of these two states,

L 2
d(si,”’ Sjﬂl) = \/Zl:l (/’Li,ml - /'L]ln.,l) )

where [L; 1, i, 18 the mean of I-th dimension of s;,, ;..
respectively.

(12)
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Definition 4.2 (The distance between state sequences
D(S;, 5))). D(S;, S;) is the distance between the state sequence
of i-th and j-th region. It is the average distance of all the corre-
sponding states,

ZN—l d(sm Sj n)

D S,-,S- = ¥’ 13

(55,5)) = (3)

where (W1, 14j,, is the mean of I-th dimension of s;n,Sjn,
respectively.

We adopt Davies-Bouldin index (DBI) [8] to determine the
number of clusters, which reflects the ratio between inter-
cluster distance and inter-cluster distance. A smaller DBI
usually indicates a more effective division. Finally, similar
dynamics in each cluster would present the same kind of
function in the city. To annotate the function after cluster-
ing, we consider the following two aspects: 1) The Pol distri-
bution of each region. We compute the density value of each
POI category for each region and rank POI categories by
their density as prior knowledge. 2) The human-labeled
regions. People may know the functions of a few well-
known regions, e.g., the region contains the Forbidden City
is an area of historic interests. After clustering, the human-
labeled regions will help us understand other regions in a
cluster. Refer to the experiments for the detailed results and
analysis [33].

4.4.2 Activity Prediction

SSHMM also enables the ability of prediction. Through the
Viterbi algorithm, we can identify the last state of the region
based on the observation. With the advantage of a probabi-
listic model, we can infer the state that the region will be in
the next time slot. More specifically, we first obtain the cur-
rent state of the region according to the current observation,
then predict the next state according to the latest state by
maximizing the transition probability.

Formally, given the current observation sequence of r-th
region denoted by O,,0,3,...,0,,, we decode its corre-
sponding hidden state sequence as s,.15,, . .., s,,. If the lat-
est state s,.,, is i-th state in the state set, then the state in the
next time slot can be predicted as

Srp+1 = argimax Ar,i,j- (14)

1<j<K
This is to say, we can achieve the prediction for the volume
of population flows and the percentage of Pols visited in the

next time slot by utilizing the mean value of the identified
next state.

5 EXPERIMENTS

In this section, we empirically evaluate the performance of
SSHMM in a large-scale real-life dataset. All experiments
are implemented by Python, and codes can be accessed in
https://github.com/XTxiatong /SSHMM.git.

5.1 Data
The mobility dataset was collected by collaborating with
Tencent', one of the largest Internet integrated service

1. https:/ /heat.qq.com/
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Fig. 4. Road network that divides the downtown area of Beijing into 665
regions.

providers in China. Whenever the user sends a location
request by all of the services provided by Tencent, his GPS
location, and request timestamp as well as check-in Pol
could be recorded.

The collected dataset covers near 2 million users in Beijing,
China with a duration of one month from April 1st to 30th,
2018. We divide the check-in Pols into nine categories: Com-
pany, Agency, Shopping, Service, Entertainment, Attractions,
Education and Residence. We also crawl the road network
from Map service and divide the downtown area in Beijing
into 665 non-overlapping regions. It is worth noting that
to protect user privacy, all data is anonymous and stored in
Tencent offline servers. We pre-process the data under their
overseeing and only take the aggregated results for further
analysis. The regions we select are as shown in Fig. 4. We
have counted the number of users as well as check-ins in each
region and each half an hour, the Cumulative Distribution
Functions (CDF) of which are as shown in Fig. 5. From it,
we can observe that our sample has covered a large amount
of the population as they are more than 600 users for more
than 50 percent of the cases, while the semantic check-ins
are rather sparsity as only 20 percent of the cases with more
than 8 records.

5.2 System Settings
5.2.1 Data Usage

In the experiments, we divide the dataset into two parts. We
utilize 21 days of data to generate the mobility behaviour
observations for model learning and use the rest for predic-
tion evaluation. We set the length of the time slot to 1 hour.
The observation in each time slot is 12-dimensional, including
3-dimensional population flow volume and 9-dimensional
check-in frequency.

5.2.2 Model Evaluation

To evaluate the effectiveness of our model and the inferred
parameters, we utilize the obtained states to recover the

u ' (8208)
a o
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(b) The number of check-ins.

# of users

(a) The number of users.

Fig. 5. The statics of dataset.
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observations by concatenating the mean value of correspond-
ing state in the hidden state sequence in chronological order.
We adopt ¢ (see Definition 5), the error between all of the
observations and the activities recovered by the mean value
of the corresponding hidden state as an evaluation metric.

Definition 5 (Recovering Error ¢). Given the observation
sequence of r-th region [O,1,0;2,...,0, ] and the corre-
sponding state sequence [s, 1, Sy.2, . - . , S n|, then the raw obser-
vation and the recovered observation in n-th time slot is

{Or.n,la 071,77“,27 R OT.H,L} and {/’L'n,la I"L’YL.Q’ e a:u“'n,L}/ VeSpeC-
tively. Therefore, it is defined as

(15)

€= Zf:] Zf:le ZIL:] (M?L,l - O?ﬂ,n,l)z
RNL ’

To determine the number of hidden states and the length
of time slots for training in each round, we try different val-
ues for comparison. As shown in Fig. 6a, we can observe
that when the number of state K increases,e decreases while
the training time increases superlinearly. Thus, we set
K =100 as a trade-off between model complexity and accu-
racy. As Fig. 6b show, we find the length of time window
has almost no impact on the training time and ¢, which is in
line with our expectations. We set is as 24, i.e., training the
model day by day.

In order to demonstrate that the dynamics are highly
related to urban functions, as our model can be used to infer
functions, we have manually labeled of dozens of regions
for dynamics validation. They have different functions
shown in Table 2.

5.2.3 Prediction Performance

In terms of prediction, we utilize the rest 9 days’ data for
evaluation. We compare the mean value of the next state
predicted with the ground-truth observations. For mobility
prediction, we adopt RMSE as the metric, which is defined
as average root-mean-square error between the normalized
the population flow of predicted and the ground truth [36].

TABLE 2
Typical Regions With Different Functions

Region Name Functions
Tsinghua University Education
Peking University Education
Tian’anmen Tourist attraction
Xidan Shopping & Business
Wangjing Residence
Zhongguancun Software Park Company
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Fig. 7. Recovered activities for Tsinghua University.

For check-ins, we adopt TopN-accuracy that reflects the aver-
age accuracy on topN frequently-visited Pol prediction of
all regions [31]. A lower RMSE or a higher TopM-accuracy
indicates better prediction performance. These two metrics
are calculated as follows.

Definition 5.1 (RMSE and TopM-accuracy). Given the
ground-truth observation sequence of r-th region [O,.,,, Oy y11,
.,O,n] and the corresponding prediction [P, ,, P41,
P, n], then the ground truth and the prediction in n-th
time slot both contains two parts as Definition 1: (1) {0y, 1,
Orn.2,Orn3t ANA {Drp1.Prn2, Prns} denotes the number of
arriving, leaving and staying; (2) {o;p4,...,0r 01} and
{Prnas--,Drnr} denotes the check-in frequency of different
categories of Pols. By sorting the Pols with their frequency in a
descending order and keep the first M Pols, we obtain the raw
TopM list and predicted TopM list denoted by V7, and VP,

respectively. Above all, the metrics are defined as follows

RMSE = \/Zr 1 Zn 1 p7 ol T 07',n.l)2

Rx N
Zr:l Zn,:l( ‘ V;qn ﬂ ,n ‘ /]\/{)
TopM — accuracy = AxN
(16)
5.3 Results
5.3.1 Model Effectiveness

To show the representative ability for human activities of
our model, we first provide a case study of Tsinghua Univer-
sity and then give the overall evaluations.

We show the recovering results of Tsinghua University of
one week as examples in Fig. 7, which exhibits a high simi-
larity with the original observations compared with Fig. 3.
The Pol visited frequencies in original observations are vol-
atile due to the sparsity of check-ins whole the recovered
results are more regular. Since the mobility is smooth, the
recovered results can still capture the peak as well as valley
and the difference between working day and non-working
day. Fig. 8 shows the relationship between RMSE and the
number of iterations. We compare it with the result of train-
ing independent HMM for each region with the same num-
ber of states. From Fig. 8, we can observe that as the number
of iterations increases, the RMSE decreases first, then tends
to remain unchanged. Furthermore, our representative abil-
ity for human activities by a limited number of states is bet-
ter than HMM: When the model converges, our RMSE is
0.0793, which outperforms HMM by 54.2 percent.
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5.3.2 States and Dynamics

In order to demonstrate the ability of our model in discover-
ing hidden states and revealing urban dynamics, we give a
series of special examples and detailed explanations. Fig. 9
visualizes the results for the regions in Table 2. We first plot
the mean value of the states with frequent occurrence, then
show the state transition process in working day and non-
working day, respectively. In China, besides the normal
weekends, April 5th (Thursday), 6th (Friday) and 7th (Satur-
day) are the Qingming Festival, which belongs to the non-
working day, while April 8th (Sunday) is a working day.

First, we Look into the Discovered States Shown in Fig. 9. Each
state has the semantics of two aspects: (1) the density of the
population flow. For example, state 32 presents a large volume
of flows and high density of populations, state 21 presents a
small volume of flows while a high density of populations,
and state 17 present a small volume of flows and low density
of populations. (2) the visit frequency of different Pols. For
example, state 31 indicates the most frequently visited Pol is
Education, while state 21 indicates the most frequently visited
Pol is Attractions. As shown in Fig. 9a, this region have the state
79 during the day as Tsinghua University occupies most of this
region. Similarly, Peking University has state 99 and Tian’anmen
has state 81. By combining these two semantics, we can infer
the activity level and lifestyle of the region. For example, state
79 shows active school status while state 70 shows quiet school
status. These high representative states, indicating different
activity levels and lifestyles, are sufficient to demonstrate the
ability of SSHMM to model urban activities.

Then we discuss the dynamics represented by the state transi-
tion processes. Take the dynamics of Tsinghua University as an
example again. As shown in Fig. 9a, during the night, there
are fewer people than the day as state 70, and 31 have a
smaller mean value of staying than that of state 79. Besides,
in working days, there is a sudden increase in crowd flow
as state 32 appear in 8:00-9:00 and 17:00-19:00. The transition
from state 70 to 32, from 32 to 79 in working days reveals the
dynamics that only students live in the region at night and
many teachers go to school in the morning, causing the pop-
ulation denser than night. Compared with Figs. 9a and 9b,
and 9c shows that both in working day and non-working
day, the density of population is consistently high and the
Pol visited most frequently is Attractions, as Tian’anmen is
one of the most famous tourist spots in China. Another
interesting finding is that for shopping and residential
areas, as Figs. 9d and 9e shown, non-working days are more
prosperous and lively than working days, but working
areas are quiet and peaceful as Fig. 9f shown. It is worth not-
ing that although the state index changes during the night in
Figs. 9a, 9b, and 9e, the semantic expressed by the states
remain consistent as their mean value u is closed.
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Fig. 9. Visualization for representative states and state sequences for different regions, where each row in the state sequences heatmap exhibits the
state transition process of one day with the number indicating the corresponding state.

To conclude, Fig. 9 gives the insights as follows:

(1) The dynamic of each region takes one day as its
cycle, as the states in the same time slot but with different
dates are usually the same. (2) The dynamic patterns
within working days or no-working days are very similar,
while the difference across working and non-working days
are determined by the function of the region. For some
regions like tourist attractions and residence areas, they
are similar like Figs. 9c and 9e, but for educational and
working places as Fig. 9b and 9f express, the dynamics
vary a lot. (3) Regions with similar functions are more
likely to have similar dynamics, i.e., sharing more hidden
states or having similar transition patterns like Figs. 9a and
9b, which are both universities.

Compared with deep learning model, one superiority of
our SSHMM is its interpretability, i.e., each state has specific
physical meaning. As discussed above, 100 states are the
best when considering the overall performance while too
many states weaken their interpretability because some of
many only have little difference. To inspect it, we reduce
the number of states to 20 and show the results in Fig. 10. It
is clear that each state represents a unique function. For
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Fig. 10. Results when state number K = 20.

example, state 4 and 10 map to residence, state 7 maps to
scenic spots, state 0, 2, and 16 map to business. Therefore, it
is easy to infer the functions of region. For instance, Tsing-
hua University in Fig. 10b is a school with state 13 appear-
ing most frequently. In summary, our model is highly
explicable for understanding urban dynamics.

5.3.3 Application of Urban Function Identification

Intuitively, human activity is significantly influenced by the
function of each region, so the inferred city state can be applied
to identify region functionality. To evaluate the identified func-
tion, considering the real fine-grained function distribution is
hard to obtain and the land use plan published by the govern-
ment is generally out of date, which means ground truth is not
available, we compare our results with the state-of-the-art
data-driven function detection method, which is an LDA
model by utilizing the static Pols and mobility together [33].

To achieve this goal, we cluster the state sequences by the
method introduced in Section 4.4. We have empirically tried
different values for the number of clusters as Fig. 11 shown,
which indicates and found that dividing dynamic patterns
into 8 types is most suitable as the minimum DBI is
achieved in this condition. After clustering, we label their
functions by the revealed semantic dynamics, including
attractions, residence, compound (suburb & business), busi-
ness, education, compound (residence & business) as well
as company. Finally, the geographical distribution of the
regions with their function types is shown in Fig. 12, where
different colors present different functions. We manually
check some regions including the regions shown in Fig. 9
on the map to verify their functions, which shows most of
the regions with the same functions are divided into one
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cluster. Besides, we present the confusion matrix of the two
results in Table 3. The clusters obtained by our model and
LDA model have with the Normalized Mutual Information
(NMD) of 0.25, which measures the similarity of two divi-
sions with the range from -0.5 to 1 [17].

While the disagreement mainly reflects in two aspects: 1)
near half of Business areas from SSHMM are Compound
region from LDA. 2) one or two regions in different func-
tions from SSHMM are identified as Others from LDA. To
verify these results, we have checked them in the Map one
by one. We found that 30 percent regions of the Business
areas from SSHMM is not pure Business but also have some
apartments for people to live, thus LDA is correct to identify
them as Compound region. But the rest regions of the Busi-
ness areas from SSHMM is sure Business and thus LDA is
wrong. However, about 80 percent of Others from LDA has
different POI distribution compared with the other seven
functions, which is to say LDA achieves higher accuracy the
SSHMM. In fact, because we derive functions by clustering,
Attraction, Residence, Education, and Company these pure
and distinctive functions are easy to be distinguished
(SSHMM and LDA are highly consistent on these func-
tions), while Business, Compound and other are complex
and more difficult to identify and thus disagreement
appears. In summary, SSHMM is good at finding pure and
common compound functions, while LDA is more suitable
to find the functions that is a quite special minor sort.

In summary, our goal is to model citizens’ daily activities
and reveal the behind regularity. Because human activity is
significantly correlated with the function of each region, the
inferred city state can be applied to identify region function-
ality with high accuracy.

5.3.4  Application of Activity Prediction

In order to evaluate the prediction accuracy of our model, we
first show the prediction of the number of staying for 9 days
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Fig. 12. Visualization of the distribution of the regions with similar dynam-
ics and functions.

in Tsinghua University in Fig. 13a as an example. Compared
with the generate HMM, the recovered observations of our
model are closer to the ground-truth in different time slots.
The results for all metrics are shown in Fig. 13b, where the
average RMSE of population flow prediction is 0.195 and the
Top3-accuracy for Pol popularity prediction is 41.4 percent,
outperforming the HMM by 16 and 8 percent respectively.
These results demonstrate our SSHMM outperforms HMM
in urban dynamics prediction problem.

5.3.5 Impact on Continuous Learning

In the above experiments, we divide our mouth data into
the first 21 and the following 9 days two parts. We learn
SSHMM parameter on the first part, uncovering states and
revealing dynamics. When we evaluate the performance of
prediction, we use the model learning from old data but test
it on the new data. Once the parameter is determined,
SSHMM can decode the hidden state sequence and predict
the next state on both old and new observations. Now, to
evaluate the continuous learning ability of our model, we
compare the observation recovery and activity prediction
performance when updating and not updating the parame-
ter. The overall results are presented in Table 4. Both the
recovery and prediction error after continuous updating
have been dropped by 2% ~ 5%. This demonstrates learn-
ing SSHMM online, if possible, can achieve better perfor-
mance. We also believe that the performance can be further
improved when the data collected for several mouth and
years, with more Pols disappearing and arising.

6 DisSCcussION

6.1 Implications
In this paper, we propose a model to reveal urban dynam-
ics. As the time is an important context and observations of

TABLE 3
Confusion Matrix for the Clusters by SSHMM and LDA
Number SSHMM
Attractions  Residence ~ Compound  Business  Education Compound Company  Others
LDA Attractions 45 1 0 6 0 1 4 2
Residence 10 33 4 10 1 2 9 0
Compound 9 25 54 29 1 8 10 0
Business 7 3 12 35 3 4 5 8
Education 6 2 0 2 52 2 0 0
Compound 13 15 13 54 0 42 12 1
Company 6 10 11 0 0 7 28 0
Others 10 0 1 22 0 1 14 0
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Fig. 13. Prediction performance compared with HMM.

adjacent time slots are continuous as shown in Fig. 3, we
regard human activities as time series and apply a
sequence model to detect dynamic patterns. To deal with
the first challenge of noisy representation, we adopt Hid-
den Markov Model, where mobility data as observations
are generated by the hidden states. In this manner, noise
disruption among different days’ collected data can be sig-
nificantly reduced. Yet previous works dealt with the noise
by discretizing continuous observations into states through
a manually-set threshold [7], [21], or by clustering [25]. In
contrast, we learn the hidden state from the data distribu-
tion automatically, which can minimize the impact of man-
ual factors. For the second challenge of sparse semantics,
we share the states for all regions, which means all the
observations are utilized to learn the emission function to
mitigate the data bias of each region. It is ignored by the
prior works [2], [21], [25] as they only reveal dynamic in
terms of intensity while semantics from check-ins cannot
be captured. Nevertheless, although we share states to han-
dle data sparsity, considering the unique character of each
region, we learn independent state transition for each
region to model their dynamic regularities. Consequently,
we can model the aggregated activities in a concise and
probabilistic way, which means dynamics prediction can
be achieved at the same time.

6.2 Applications
Our results facilitate urban planning in various aspects.
Foremost, our findings provide a more comprehensive
understanding of urban dynamics and urban functions.
For architects, planners, and urban designers, neighbor-
hood activity patterns from intensive ethnographic surveys
that take years to conduct can be outdated quickly given
the rapid development of the society. Moreover, the fea-
tures provided by our work helps to examine the intensity
and diversity of human activity within a given neighbor-
hood, thus offering novel insights into the functioning of
the entire neighborhood and enabling the government to
make better plan on land use. Last but not the least, under-
standing the regularity of the population flows is essential
for traffic dispatching, transportation infrastructure con-
struction, etc., while predicting the popular Pols in differ-
ent regions and different time slots will benefit business
siting and precision marking.

On the other hand, our proposed SSHMM, which learns
a group HMMs tied by common state set, outperform inde-
pendent HMMs in the prediction task as it overcomes the
data sparsity and uses the correlation between sequences.

3479
TABLE 4
Performance Comparison
Error € Learnt by previous Continuous
data updating

Recovering previous 0.080 0.078
observation

Recovering future 0.085 0.083
observation

Predicting future 0.096 0.091

observation

Similar to the aggregated mobility data, there is much other
time series with the multi-dimensional nature and sheer
size (e.g., voice sequence, music sequence), which can uti-
lize SSHMM for modeling and prediction.

6.3 Limitations and Future Work

In this paper, we propose a novel state-sharing but transi-
tion-independent HMM. On the one hand, we choose
Gaussian function as the emission function as its simplicity
and effectiveness [24]. We leave finding a complex but more
effect emission function as our future work to extend the
model to adapt to various scenarios. On the other hand, our
motivation to share state is that previous related works
show that different regions indeed have the same states in
different time slots [9], [21], [27]. Yet there might be some
common patterns for state evolving between regions. There-
fore, finding some insightful motifs [3] in the revealed hid-
den state is also the next step of this work. Besides, inspired
by IOHMM [5], we will also consider incorporating input
variables, such as time of day and day of week, as context to
improve the performance of our model.

7 CONCLUSION

In this paper, we study the problem of understanding
urban dynamics. We propose a State-sharing Hidden Mar-
kov Model (SSHMM), where the states are shared by all
the regions, but each region has its own transition regular-
ity. To make it practical, we improve the Baum-Welch
algorithm by splitting the long observation sequences into
short ones and updating the parameters in parallel. We
evaluate our method via a real-life data in Beijing. The
results demonstrate that SSHMM learns a meaningful
semantics-rich urban dynamics model, recovers different
activity regularities by a limited number of states and
incurs low training costs.
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