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Abstract—With the flourishing of location based social networks, posting check-ins has become a common practice to document

one’s daily life. Users usually do not consider check-in records as violations of their privacy. However, through analyzing two

real-world check-in datasets, our study shows that check-in records are vulnerable to linkage attacks. Specifically, adversary is able

to uniquely re-identify over 52�66 percent users in other anonymous mobility datasets and 60�80 percent users have more than

60 percent probability leaking unreported mobility records. In addition, we further demonstrate that the privacy sensitivity of check-in

records can be more accurately measured by including the information of additional mobility data compared with only looking at

check-ins. Based on this observation, we design a partition-and-group framework to integrate the information of check-ins and

additional mobility data to attain a novel privacy criterion—kt;l-anonymity. It ensures adversaries with arbitrary background

knowledge cannot use check-ins to re-identify users in other anonymous datasets or learning unreported mobility records.

The proposed framework achieves favorable performance against state-of-art baseline in terms of improving check-in utility by

24�57 percent while providing stronger privacy guarantee at the same time. We believe this study will open a new angle in

attaining both privacy-preserving and useful check-in services.

Index Terms—Check-ins, privacy-preserving data publishing, linkage attacks, mobility data privacy

Ç

1 INTRODUCTION

CHECK-IN service has now become a popular feature
that is widely adopted by the mainstream social

media platforms, such as Facebook, Twitter and Wechat.
It facilitates users to document their daily activities with
mobility trace and share them with public audience.
Users usually do not associate the self-reported check-
ins with privacy risks, since they only check-in to places
they feel comfortable [1]. However, the uniqueness of
human mobility often exposes their check-in records
to linkage attacks, i.e., revealing their identities and
unreported mobility records in other anonymous mobil-
ity datasets, such as call detail records [2], transportation
records [3], and credit card records [4]. Moreover, recent
researches showed that most users are unaware or
not able to fully anticipate the privacy risks embedded
in posting check-ins [5]. Therefore, it is a paramount
task for the check-in service providers to quantify the
potential privacy exposures and put forward feasible
solutions.

Previous efforts attempt to address the problem of link-
age attacks on mobility data by ensuring user’s anonymity
in anonymous mobility datasets [4], [6]. That is, making
sure adversary cannot achieve unique linkages based on
user’s check-ins through generalizing the records in

anonymous mobility datasets. However, such approach
often requires unacceptable data utility degeneration [7],
and cannot prevent adversary from learning additional
unreported mobility records [8]. It is also unrealistic for
users and check-in service providers to assume all anony-
mous mobility datasets have been properly sanitized, since
studies repeatedly demonstrated that insecure datasets had
been irreversibly spread across the Internet [9], [10]. There-
fore, these findings suggest it is impractical to prevent link-
age attacks by sanitizing anonymous mobility datasets.
In this paper, we investigate and address this problem
through a novel angel—looking at the public mobility
records, i.e., check-ins.

To better understand the underlying mechanism of link-
age attack, we conduct extensive experiments on two large
scale real-world check-in traces in parallel with user’s addi-
tional mobility data from two mainstream social media plat-
forms—WeChat and Weibo. It allows us to make the
following important observations. First, check-in records
have severe privacy exposures to linkage attack. Specifi-
cally, 52 percent users in WeChat and 66 percent users
in Weibo can be uniquely re-identified with their check-ins,
while 60 percent users in WeChat and 80 percent users
in Weibo suffer from leaking unreported mobility records
with over 60 percent probability. Second, such grave pri-
vacy risks result from the high uniqueness in both check-ins
and mobility data. Interestingly, we find out that the root
causes for the highly unique check-ins and mobility data
are exactly the opposite—too little check-ins in total and too
many mobility records per users. Third, we find out that
the privacy sensitivity of check-ins measured by only look-
ing at check-in uniqueness is an upper bound of actual
privacy risks. One can significantly improve the estimation
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of privacy sensitivity by introducing moderate amount of
additional mobility data. These findings inspired us to
design a better-informed privacy mechanism for check-in
services by integrating the information of check-ins and
additional mobility data.

In this paper, we put forward several contributions to
attain both privacy-preserving and useful check-in serv-
ices. First, we extend the frameworks of k-anonymity [11]
and l-diversity [8] in check-in privacy preserving, and
devise a novel privacy criterion kt;l-anonymity. It ensures
the posted check-ins cannot be exploited to distinguish
user from at least other k� 1 users in any anonymous
mobility datasets, and for any time window of duration t

user’s actual locations are indistinguishable from at least
other l� 1 locations. Second, we further propose a parti-
tion-and-group framework to optimize the check-in utility
under kt;l-anonymity privacy guarantee by carefully parti-
tioning user population into small anonymity groups.
Third, we conduct a thorough trace-driven evaluation on
the proposed framework based on the real-world datasets.
The evaluation results demonstrate that our framework
significantly outperforms state-of-art baseline methods in
terms of achieving 24�57 percent check-in utility improve-
ment while providing stronger privacy guarantee in the
same time. In addition, 32�62 percent check-in utility
boost of our framework is achieved by introducing addi-
tional mobility data, which showcases the benefits of inte-
grating additional mobility data in privacy-preserving
check-in service. Finally, our study reveals two intriguing
trade-offs between the utility and privacy in check-in
services: ðiÞ in order to achieve modest privacy gains,
users need to sacrifice significant check-in utility, i.e.,
reducing spatio-temporal resolution of check-ins. ðiiÞ users
may increase the utility of their check-ins with same pri-
vacy level by letting check-in service providers to collect
moderate amount of additional mobility data. Such find-
ings may have direct implications on how to defend
linkage attacks with the joint effort of check-in service pro-
viders and individual users.

2 RELATED WORKS

We summarize and discuss the most relevant literature
from the following three aspects.

Linkage Attack. The linkage attacks were widely studied in
multiple scenarios and had received increasing attention in
recent years [8], [11], [12], [13]. The most prominent two
branches are re-identification attack and probabilistic attack [14].
Specifically, the re-identification attack aims at recovering
individuals’ identities in anonymous datasets by achieving
unique linkageswith public datasets. For example, 87 percent
of American population can be uniquely re-identified with
the public accessible information of ZIP code, gender and
date of birth [11]. Similar findings have been established in
wide range of scenarios, includingweb browsing records [15],
call detail records [7], app usage records [13], [16], social
media profile [17] and so on. One popular privacy model
against such attack is k-anonymity, which requires to make
the records of each individual indistinguishable from at least
k� 1 others [11]. On the other hand, probabilistic attack is a
more general form linkage attacks, which aims at improving

some belief on individuals through correlating the datasets.
Researchers demonstrated that by combining online social
network data and sparse offline location data individual’s
locations can be predicted with high precision [18]. In
addition, user’s identities across different online social media
sites can be associated with high accuracy based on the user
generate content [17], [19], e.g., public profile and images.
Moreover, the salary class of individuals can be accurately
inferred by correlating census data with public available
information [8]. To defend such attacks, l-diversity and
t-closeness have been proposed to ensure the diversity on
the sensitive information within each anonymity group [8],
[12], [20], [21], [22].

We position our study in a novel scenario of defending
against the linkage attacks on social media check-ins. We
aim to provide strong privacy guarantee for check-in service
against both re-identification attack and probabilistic attack,
and design privacy solution compatible with unstructured
spatio-temporal data.

Mobility Data Privacy. The literature in this area can be fur-
ther broke down into two categories: aggregate mobility data
privacy and individual mobility data privacy. As for the for-
mer, recent study found evidence that aggregate mobility data
suffers from the risks of leaking individual trajectories [13],
[23]. In addition, differential privacy has been applied on aggre-
gate mobility data to provide provable privacy guarantees for
individuals [24], [25]. As for individual mobility privacy, geo-
indistinguishability model is devised to achieve practical pri-
vacy guarantee in individual mobility collecting [26], [27]. In
addition, vast amount of literature were dedicated to ensure
location anonymity in the context of geo-referenced queries in
location based service [28], [29], [30]. However, these privacy
models aim to prevent attackers to infer certain mobility
records of individuals, but provide no privacy guarantee
against the linkage attack on trajectories [31]. On the contrary,
cloaking, generalization and suppression techniques are leveraged
to achieve k-anonymity in releasing anonymous individual
trajectories [6], [32], [33], [34], [35]. However, recent studies
showed that such approacheswill likely to result in significant
data utility degeneration [7], [36].

We tackle the specific problem of designing privacy-
preserving check-in service, which is closely related to prior
effort in individual trajectories releasing. However, it differs
from previous works that users have strong requirement for
check-in utility and social desirability, which makes the
differential privacy framework not applicable and poses a
pressing need for novel privacy criterion.

Privacy in Check-in Services. The privacy risk in posting
check-ins is more subtle than most data publishing scenar-
ios, since users often cannot fully anticipate the privacy
threat and only realize the exposure in regret [1], [5].
Researchers have shown that anonymization does not help
in check-in scenario since both social relationship informa-
tion and location information can be leveraged to reveal
user’s identity [37], [38]. Moreover, previous researches
have demonstrated that linkage attack is empirically feasi-
ble on check-in records [39], [40]. Previous solutions mainly
focus on application specific privacy preserving mecha-
nisms, such as privacy-preserving personalized location
based services [41], preventing social-based location infer-
ence attacks [42], and so on. One closely related work
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demonstrated that check-ins can be leveraged to re-identify
anonymous call detail records through linkage attack [2].
The authors suggested this problem could be addressed by
generalizing the anonymous call detail records, which was
in line with rich literature dedicated to achieve k-anonymity
on anonymous mobility data [6], [33], [34].

Different from the prior works that targeted at applica-
tion specific privacy mechanisms, we investigate a more
general form privacy problem in check-in services, i.e., the
linkage attack with arbitrary anonymous mobility data.
Moreover, instead of analyzing the feasibility of linkage
attack models, we aim to propose an effective privacy
model. In addition, our research differs from the second
branch of related works by addressing the privacy problem
through a new angle—looking at the check-in data.

3 PROBLEM FORMULATION

3.1 Objectives

The ultimate objective of our study is to prevent the linkage
attacks on social media check-ins, and design privacy-pre-
serving and useful check-in services. We further break it
down into three parts:

� Preventing linkage attacks: The posted check-ins should
be privacy-preserving against linkage attacks. That
is, adversary with arbitrary background knowledge
is limited by user specific bound to enlarge their
knowledge about individuals through accessing their
check-ins.

� Truthfulness at record level: In the context of check-in
services, social desirability plays an important role.
Thus, we aim to realize truthfulness at record level [14],
which indicates we cannot distort check-in records
into mobility records that never happen or inject
fake check-ins to protect user privacy.

� Reasonable trade-off between privacy and utility: In order
to achieve practical solutions, we require the privacy
mechanism to strike a reasonable trade-off between
privacy and utility. It implies that the utility of
check-in records should remain at desirable level
when strong privacy guarantee is provided.

3.2 Attacker Model

To achieve robust privacy mechanism, we first assume that
the adversary may have arbitrary background knowledge
on each individual user’s mobility data, including those the
check-in service providers are not aware of. Then, the link-
age attacks on check-in services are further classified into
two categories:

Re-Identification Attack. The adversary attempts to recover
user’s identity in other anonymous mobility datasets by
achieving a unique linkage between user’s anonymous
mobility data and public check-ins. The attack procedure is
illustrated in Fig. 1a. It is worth pointing out that recent
research successfully showcased such attack in real-world
scenario, where hundreds of individuals in an anonymous
call detail records are uniquely re-identified with 90 percent
confidence by leveraging public accessible check-ins [2].

Probabilistic Attack. This attack aims to enlarge adversary’s
knowledge on individuals, i.e., learning additional mobility

records they do not report. The adversary may successfully
perform probabilistic attacks even if he does not achieve
unique linkages, i.e., re-identifying users. For example, if
two users have exactly the same trajectories in an anony-
mous mobility dataset, then it is impossible to distinguish
them from each other based on their check-ins. However,
adversary can still know for sure that the users have visited
the locations shared by their trajectories. The attack proce-
dure is illustrated in Fig. 1b. Such attack is more subtle, but
no less dangerous.

3.3 Privacy Model

We first introduce the privacy framework of k-anonymity
and l-diversity, which is the basis of our model. Then, we
elaborate on our novel privacy criterion—kt;l-anonymity.

k-anonymity. The k-anonymity framework is originally
devised to defend the re-identification attacks in relational
database [11]. It requires data sanitizing techniques that ren-
der each individual’s attributes indistinguishable from at
least other k� 1 individuals’, which forms an anonymity
group that prevents any individuals within to be uniquely
re-identified. However, k-anonymity is known to be power-
less against probabilistic attacks, since each individual is hid-
den in a crowd that lacks of diversity [8].

l-diversity. To make up for the short-coming of k-anonym-
ity, l-diversity is put forward to ensure users’ diversity on
sensitive attributes within each anonymity group [8]. Specif-
ically, it first classifies the attributes into sensitive and non-
sensitive types. Then, it requires each individual cannot be
uniquely re-identified with the non-sensitive attributes,
while the sensitive attributes should be of at least l different
categories within each anonymity group. The idea of dis-
criminating between sensitive information and non-sensi-
tive information is a natural fit to our application, since the
self-report check-ins are usually considered non-sensitive
and unreported locations otherwise. However, l-diversity is
also meant for relational database and not able to be applied
on unstructured and continuous spatio-temporal data.

kt;l-anonymity. Inspired by the insights and limitations of
previous models, we design a novel privacy criterion
kt;l-anonymity to address the privacy issues in check-in serv-
ices. Specifically, kt;l-anonymity requires:ðiÞ any users on
social media cannot be distinguished from at least other
k� 1 users in any other anonoymous mobility datasets
based on their public check-ins; ðiiÞ for any time window of
duration t users’ unreported locations cannot be discrimi-
nated from at least l� 1 other potential locations. Therefore,
the knowledge adversary can acquire through linkage
attacks, i.e., users identity in other anonymous mobility
datasets and unreported mobility records, is effectively

Fig. 1. Illustration of linkage attacks on check-ins.
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bounded by user specific parameters k; t; l. In other words,
kt;l-anonymity is able to provide strong privacy guarantee
against both re-identification attack and probabilistic attack.

Note that there is another popular privacy framework for
mobility data protection, i.e., differential privacy [10]. The
main reasons we do not follow this framework are two
folds. First, differential privacy is designed to obfuscate cer-
tain mobility records instead of preventing trajectory link-
age attack [26], [31]. That is it prevents the attackers to infer
the actual location of users but does not provide rigours pri-
vacy bound for trajectory linkage, which is not applicable in
our scenario. Second, current differential privacy methods
mainly rely on injecting noises to mobility records [43].
Thus, it might generate false check-in records, which is
against the Truthfulness at record level objective. On the other
hand, the kt;l-anonymity privacy criterion is tailored to pre-
vent re-identification attack and probabilistic attack, and it can
meet all the objectives theoretically.

4 DATASETS

4.1 Data Collection

We utilize two real-world datasets collected from large scale
user population in two mainstream social media platforms:
WeChat and Weibo. The detailed information is discussed
as follows.

WeChat Dataset.1 WeChat platform is currently the most
popular social media platform in China. This dataset con-
sists of 530,050 check-ins collected from 100,000 users,
which are randomly selected from the general user popula-
tion spread across Beijing city. It covers two and a half
month of usage, i.e., from Jan. 1 to Mar. 15, 2018. We also
collect an additional mobility dataset including over 193
millions mobility records from same user population during
same time period.

Weibo Dataset.2 This dataset is collected by a previous
research [40]. It contains 11,866,425 mobility records and
78,412 check-ins on Weibo platform from 17,425 users
located in Shanghai during one week, i.e., from Apr.19 to
Apr.26, 2016. Different from WeChat dataset, the Weibo
dataset is collected by internet service provider by perform-
ing deep packet inspection on cellular traffic.

It is worth pointing out that the additional mobility
records are collected through all the integrated location
based services in these two platforms. Take the all-in-one
WeChat platform as an example, whenever users invoke the
embedded location based services like online map service,
car hailing and takeout ordering they generate a mobility
records in dataset. Therefore, the additional mobility data is
a superset of check-in records, which constitutes a more
fine-grained mobility trace and makes it suitable to model
the arbitrary background knowledge of the attackers.

Note that the collected mobility data is a sample of user’s
complete mobility behavior. Therefore, the privacy expo-
sure measured on these datasets captures a lower bound of
potential exposure. However, our privacy mechanism is still
set to provides privacy guarantee when arbitrary anony-
mous mobility data is presented. On the other hand, we

perform standard prepossessing to format the datasets to
accommodate the different spatio-temporal resolution
results from different data sources. Specifically, we trans-
form the GPS coordinates into grid IDs by dividing the city
into grids of 1 km2, and replace the timestamps with time
slot IDs by dividing the total duration into 1 hour time slots.
To demonstrate the basic statistics of datasets, we show the
probability distribution function (PDF) of number of mobil-
ity records and check-in records of each user in Fig. 2. From
the result, we can observe that the additional mobility
records are denser then the check-in records, since number
of records is 2 3 magnitude higher. In addition, both the
check-in records and mobility records follow a well-defined
power distribution. These observations are consistent with
the previous findings on check-ins from Foursquare and
twitter [44] as well as the mobility patterns extracted from
call detail records [45] and credit card records [4]. It indi-
cates our leveraged datasets are representative of typical
check-in and mobility behavior, and our findings can be
generalized across different platforms.

4.2 Ethic Consideration

We take careful steps to address privacy issues regarding
the sharing and mining of user data. First, the terms of ser-
vice for WeChat and internet service provider include con-
sent for research studies. Tencent, the parent company of
WeChat, and authors of [40] shared user data after prepro-
cessing the data to protect user privacy. All user identifiers
have been replaced with the secure hashcodes to improve
anonymity. Second, our research protocol has been revie-
wed and approved by our local university institutional
board. Third, all data is stored in a secure off-line server.
Only authorized members in the research team can access
the datasets, and all research procedures are bound by strict
non disclosure agreements.

5 UNDERSTANDING THE PRIVACY EXPOSURE IN

CHECK-INS

5.1 Measuring Privacy Exposure

We first measure the privacy exposures to re-identification
attack. Since adversary attempts to uniquely re-identify
users in anonymous mobility dataset through such attack,
we measure the exposures as the number of trajectories
each user’s check-in records match to in the anonymous
mobility datasets. For example, if there is only one matched
trajectory, it indicates a successful re-identification on revea-
ling the identities of targeted users. We plot the PDF of the
number of matched trajectories on both WeChat and Weibo

Fig. 2. The distribution of the number of user’s check-ins and mobility
records.

1. [Online]. Available: https://weixin.qq.com/
2. [Online]. Available: https://weibo.com/
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datasets in Fig. 3. For the Wechat datasets, we can observe
that 52 percent users’ anonymous trajectories can be uniqu-
ely re-identified with their check-ins. In addition, Fig. 3b
shows 66 percent of users in Weibo can be uniquely re-
identified. These results indicate that public check-ins have
severe privacy exposure in leak users’ identity in other
anonymous mobility datasets.

Then, we further quantify the privacy exposure to proba-
bilistic attack in users’ check-in records, i.e., the likelihood
of revealing unreported mobility records. Previous analysis
shows more than 30 percent users’ check-ins will match to
more than one anonymous trajectories. However, in a given
time slot, if all the matched trajectories visit a same location,
then the adversary can make a safe bet that the targeted
user has been there. In other words, the more diverse visited
locations of the matched trajectories in a given time slot, the
lower risk of revealing unreported mobility records of the
targeted users. Assume there are l different locations visited
by matched trajectories, we calculate the probability of
revealing unreported mobility records as 1=l. For each user,
we compute the probability of revealing unreported mobil-
ity records in each time slot and average them across the
time duration to measure the exposure to probabilistic
attack. Fig. 4 shows the PDF of each user’s probability in
revealing unreported mobility records. Take Weibo data
for example, 60 percent users have a 80�100 percent proba-
bility of revealing unreported mobility records, which
means most of their records in anonymous mobility datasets
can be accurately recovered through probabilistic attacks.
In addition, 60 and 80 percent users have a more than
60 percent probability in revealing unreported mobility
records for WeChat and Weibo data, respectively. All these
results demonstrate that public check-in records also face
serious privacy exposure to probabilistic attack.

The underlying reason of such grave privacy risk is
user’s highly unique check-in behavior and mobility data. It
allows adversary to achieve high quality linkage between
check-in records and anonymous mobility datasets. A com-
mon strategy to address this problem is to decrease the
uniqueness by generalization [7], [36], i.e., lowering the

spatial or temporal resolution. However, Fig. 5 shows
simple generalization does not provide effective privacy
enhancement. Here, the uniqueness is measured by the per-
centage of users can be uniquely re-identified with their
check-in records or random ten mobility records. For
WeChat check-in records, we can observe that a 9 km
decrease in spatial resolution only reduces the uniqueness
by 23 percent, which is still over 65 percent. In addition,
a 9h decrease of temporal resolution can only bring a
15 percent decrease of the uniqueness. For Weibo dataset,
the decrease of spatial and temporal resolution also pro-
vides similar small decrease in uniqueness. These results
indicate simple generalization does not work in preserving
check-in privacy, since it requires significant utility loss to
achieve modest privacy improvement.

5.2 Finding a Novel Angle

Previous observations motivate us to explore a novel angle
to attain both privacy-preserving and useful check-in serv-
ices. We start by investigating the root causes of such high
uniqueness in both check-ins and mobility data.

Although check-ins and mobility data have similar
uniqueness level, they are significantly different in the num-
ber of records per user. Therefore, we first look at the impact
of record number on data uniqueness. Specifically, we ran-
domly sample 1�5 records from each user’s check-ins and
mobility data respectively, and present the uniqueness
among the sampled data in Fig. 6. From the results, we can
observe that the uniqueness of check-ins remains relatively
high when the number of records per user decreases from 5
to 1 in both WeChat and Weibo datasets. On the contrary,
the uniqueness of mobility data reduces significantly as the
number of records decreases. As the number of records
decreases from 5 to 1, the level of uniqueness decreases
from 86 to 5 percent in WeChat mobility dataset and from
99 to 2 percent in Weibo mobility dataset, respectively. It
indicates that the number of records per user is the deciding
factor in the uniqueness of mobility data. In another word,
the root cause of highly unique mobility data is each
individual has too many mobility records.

Fig. 3. Privacy exposure to re-identification attack.

Fig. 4. Privacy exposure to probabilistic attack.

Fig. 5. Naive spatio-temporal generalization does not work in preventing
linkage attacks on check-ins.
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On the other hand, check-in records are inherently differ-
ent from mobility data in terms of number of record, where
check-ins are two magnitude fewer than mobility records in
both datasets. It inspires us that the root cause for highly
unique check-ins could be too few “crowd” for users to hide
into, i.e., the number of check-ins in total is too small. To
validate this effect, we add in additional mobility records
randomly sampled from mobility datasets into check-in
dataset, and present the uniqueness of check-ins with differ-
ent amount of additional mobility records in Fig. 7. From
the results, we find out that the uniqueness of check-ins
decreases rapidly when moderate amount of additional
mobility records are added in. Specifically, when 1 � 100
percent total mobility records are added, the uniqueness of
check-ins decreases from 82 to 58 percent in WeChat dataset
and from 79 to 52 percent in Weibo dataset, respectively.
These results indicate the root cause of highly unique
check-ins is the sparsity of check-ins, which is in consistent
with our assumptions. These analyses reveal an insightful
finding that the root causes for high uniqueness in mobility
data and check-ins are the exact opposite—too many mobil-
ity data and too few check-in records.

Inspired by these observations, we propose to measure
the privacy sensitivity of check-ins as the uniqueness of
check-ins in the context of additional mobility data. Specifi-
cally, a user’s check-ins are unique if they do not co-locate
with any other users’ check-ins or unreported mobility
records. We remark that the check-in uniqueness in the
context of additional mobility data is a more fine-grained
measurement on the privacy sensitivity compared with
only looking at check-ins. The reason is that adversary
cannot achieve unique linkages on users when their check-
ins co-locate with other users’ unreported mobility records,
even if they are unique by only looking at check-ins. The
uniqueness measured solely on check-ins is actually an
upper bound of privacy sensitivity estimated with incom-
plete information.

To showcase the potential performance gain by including
additional mobility data, we present the comparison of pri-
vacy sensitivity estimation in Fig. 8. From the result in
Fig. 8a, we find out that in WeChat dataset the check-in
uniqueness measured with additional mobility data is
58 percent, which is significantly lower than the 86 percent
measured among solely check-in records and 95 percent
measured among solely mobility data. Similar results are
also observed in Weibo dataset. In addition, Fig. 8b and 8c
demonstrate that in both WeChat and Weibo dataset the
uniqueness of check-ins measured with mobility data
decreases significantly faster when spatial and temporal
generalization is applied. These fine-grained privacy sensi-
tivity measurements not only help us to better quantify the
privacy exposure in posting check-ins, but also has the
potential to facilitate better-informed privacy preserving
mechanisms.

6 SOLUTION

We first formally denote the variables we use throughout
the paper. Then, we describe three basic sanitizing opera-
tions and check-in utility cost function that our system is
built upon. Finally, we design an algorithm, denoted by
kt;l-merge, to efficiently implement kt;l-anonymity on check-
in data, and further propose a partition-and-group algorithm
to optimize check-in utility under privacy guarantee.

6.1 Definitions

Formally, we define the additional mobility data of user i as
Ri ¼ rim

� �
, where rim is the mth record of user i. It can be

expressed as a tuple rim ¼ ðxi
m; yim; timÞ, with xi

m, y
i
mand tim

denoting the longitude, latitude and time stamp, respec-
tively. On the other hand, we denote the check-in records as
Ci ¼ cim

� �
, where cim is themth check-ins of user i. Since the

check-in records after sanitization may have various spatial
and temporal resolution, cim is defined as ðx̂i

m; Dx̂im; ŷim;
Dŷim; t̂im; Dt̂imÞ, with ½x̂i

m; x̂i
m þ Dx̂i

m� � ½ŷim; ŷim þ Dŷim�

Fig. 6. Uniqueness of check-in and mobility data on different number of
records.

Fig. 7. The impact of additional mobility data on check-in uniqueness.

Fig. 8. Check-in uniqueness measured with additional mobility data. Solid line denoting WeChat dataset and dash line denoting Weibo dataset.
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and ½t̂im; t̂im þ Dt̂im� denoting the coverage in spatial and
temporal dimensions, respectively.

6.2 Basic Operations

To accommodate the requirement of truthfulness at record level,
we limit our data sanitizing techniques to generalization and
suppression, i.e., addressing the privacy problem by reducing
check-in’s spatiotemporal resolution or leaving out check-ins.
Such operations avoid adding noises to check-in records that
may displace users to places they never been to or injecting
fabricated check-ins, which maintains the integrity of check-
ins and avoid compromising their social figures. On the other
hand, to effectively defend against probabilistic attack, we also
define a diversity check operation to ensure the diversity on
sensitive information within anonymity groups. Specifically,
the basic operations are described as follows:

Generalization.Generalization is to reduce spatial and tempo-
ral resolution of check-ins so that they overlap with other
user’s check-ins or unreported mobility records. In this way,
the adversary can no longer uniquely link the check-ins with
anonymous mobility data, which effectively prevents the re-
identification attacks. We define the generalization operation as
Gðc? ; r? Þ, where c

?
and r

?
are check-in and other user’s mobil-

ity record, respectively. This operation will output generalized
check-ins, which is demonstrated in Fig. 9a.

Suppression. When the spatial and temporal resolution of
check-in records are too low, their utility is diminished. In
real-world scenario, some “outlier” check-ins may require
significant generalization to prevent re-identification attacks,
which renders the check-ins useless. Specifically, suppression
operation Sðc? Þwill return true for leaving out the check-ins
c
?
when spatial coverage exceed Au or temporal coverage

exceed Tu. That is, the system will recommend users not to
post such check-ins. The suppression operation is demon-
strated in Fig. 9b. Without loss of generality, Au and Tu is set
to 1000 km2 and 120 hours, respectively.

Diversity Check. We define diversity check operation as
Dð R

?f g; t; lÞ, with R
?f g denoting the unreported mobility

records of the inspected anonymity group. The illustration of
diversity check is presented in Fig. 9c. Specifically, the operation
search the total time duration with a sliding time window of
duration t and step length of minimal time resolution Dt.
Then, it computes the number of distinct locations in each
time window with each individual contribute at most one

distinct location. If there is a timewindowwith less than l dis-
tinct locations than the operation returns false for failing the
diversity check, otherwise it returns true for passing.

6.3 Cost Function

Specifically, the cost function is defined as a linear combina-
tion of the spatial and temporal coverage of the investigated
check-in, which can be computed as follows,

UðcimÞ ¼
�a �

ffiffiffiffi
A
p þ �t � T; if A < Au and T < Tu;

�a �
ffiffiffiffiffiffi
Au

p þ �t � Tu; otherwise;

(

where A ¼ jDx̂i
mj � jDŷimj and T ¼ jDt̂imj denote the spatial

and temporal coverage of generalized check-in. �a and �t

are designed to weigh the spatial and temporal factors. In
this study, we set both �a and �t to 0.5, which indicates 1 km
diameter of spatial coverage and 1 hour temporal coverage
map to similar cost. In addition, since the check-ins are sup-
pressed if their spatial coverage exceed Au or temporal cover-
age exceed Tu, we set cost function at maximum value to
represent complete lost in utility.

6.4 Achieving kt;l-anonymity

Now, we describe how to attain kt; l-anonymity within a
given user group. The remaining problem is finding
the optimal set of mobility records each check-in should
generalized upon, in order to minimize the overall cost on
check-in utility. To that end, we propose a greedy algorithm
kt; l-merge to achieve kt; l-anonymity while minimizing utility
cost, which is presented in Algorithm 1.

The algorithm first performs diversity check on the given
user group, and only proceed to merge if they pass the
check. The diversity on unreported mobility records is
ensured by searching for legitimate user groups on whole
user population, which is beyond the scope of kt; l-merge
algorithm and will be addressed by following components.
After that, the algorithm enumerates through all the users
within the group, and find an optimal mobility record from
each user for the check-in to generalize with. This process
effectively ensures the check-ins of each individual cannot
be exploited to distinguish them from the rest of the group,
while keeping the diversity on unreported mobility records
within the group, i.e., achieving kt; l-anonymity.

Fig. 9. The illustrations of three basic sanitizing operations.
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Algorithm 1. kt; l-merge Algorithm

Input: Check-in data C, mobility data R
Input: Anonymity k, diversity l, time window t

Output: Sanitized check-in data Ĉ
ifDðR; l; tÞ ¼¼ false or jCj < k then
Return false;

else
Ĉ C;
foreach i; j 2 Ĉ; j 6¼ i do
foreach c

? 2 Ĉ½i� do
r
?  argmin8r2R½j�U Gðc? ; rÞð Þ;
c
?  Gðc? ; r? Þ;
Ĉ½i�:updateðc? Þ;

foreach c
? 2 Ĉ½j� do

r
?  argmin8r2R½i�U Gðc? ; rÞð Þ;
c
?  Gðc? ; r? Þ;
Ĉ½j�:updateðc? Þ;

Return Ĉ;

6.5 Partition-and-Group Framework

One key problem in optimizing the privacy mechanism on
large scale check-ins is how to partition the user population
into optimal anonymity groups. The check-in utility will be
significantly improved by carefully classifying the users
into numerous small anonymity group that passes diversity
check compared with putting all of them in one group. We
use the word “legitimate” to refer to the anonymity groups
that pass the diversity check. Achieving the optimal partition
of user population requires enumerate all the legitimate
anonymity group, which is a NP-hard problem and cannot
be readily solved in real-world scenario. We design a novel
partition-and-group framework to efficiently optimize the
check-in utility through a “divide-and-conquer” manner.
The idea is to iteratively break down the user population
into two small subsets until the minimum legitimate anonym-
ity groups are met, which is illustrated in Fig. 10. An impor-
tant problem is determining whether a anonymity group is
minimum legitimate anonymity group, i.e., the anonymity
group cannot be divided into smaller subsets that all pass
diversity check. We exploit a convenient property of diversity
check to address this problem, which is formally described
in the following proposition.

Proposition 1. If an anonymity group does not pass the diver-
sity check, then any subsets of this anonymity group will not
pass diversity check.

Proof. Suppose the unreported mobility records of an ano-
nymity group do not pass the diversity check of parame-
ters ðt; lÞ. Based on the definition of diversity check, there
exist at least one time window ½t; tþ t� that the number
of distinct locations is less than l. Since the number of
distinct locations increases with number of users mono-
tonically, any subsets of inspected anonymity group will
have less than l distinct locations in ½t; tþ t�. Therefore,
any subsets of inspected anonymity group will not pass
the diversity check. tu

Algorithm 2. Partition-and-Group Algorithm

Input: Check-in data C, mobility data R
Input: Anonymity k, diversity l, time window t

Output: Sanitized check-in data Ĉ
foreach i; j 2 C; j 6¼ i do
C

?  kt; l-mergeðC½ i; jf g�;R½ i; jf g�; 2; 0; 0Þ;
W ½a; b�  sumð½Uðc? Þj 8 c

? 2 C
? �Þ;

checkin stack:insertðCÞ;mobility stack:insertðRÞ;
stop false;
while stop 6¼ false do
C

?  checkin stack:popðÞ;
R

?  mobility stack:popðÞ;
if ! divide-2-group(C

?
;R

?
;W; k; l; t) then

checkin group:insertðC? Þ;
mobility group:insertðR? Þ;

else
C1;C2;R1;R2  divide-2-group(C

?
;R

?
;W; k; l; t);

checkin stack:insertð C1;C2f gÞ;
mobility stack:insertð R1;R2f gÞ;

if checkin stack ¼¼ ; then
stop true;

while checkin group 6¼ ; do
C

?  checkin stack:popðÞ;
R

?  mobility stack:popðÞ;
C

?  kt; l-mergeðC?
;R

?
; k; l; tÞ;

Ĉ:insertðC? Þ;
Return Ĉ;

The above proposition guarantees that an anonymity
group is minimum legitimate anonymity group if it cannot be
further divided into two legitimate subsets, since any subsets
of anonymity groups that cannot pass diversity check will
not pass the diversity check. Build upon this proposition, we
design the partition-and-group framework with the pseudo-
code presented in Algorithm 2. Specifically, it first computes
the cost matrix W , with W ½i; j� filled with the cost of achiev-
ing 2-anonymity on the check-ins of user i and j with
kt; l-merge algorithm. Then, it iteratively partition each ano-
nymity group into two subsets with divide-2-group algorithm,
and when an anonymity group cannot be divided further it
is considered as a final anonymity group. Finally, we apply
kt; l-merge algorithm on each final anonymity group to ensure
all users are protected by kt; l-anonymity.

In addition, the pseudocode of divide-2-group algorithm is
presented in Algorithm 3. It first selects out a user i with
maximum total cost to other users within the group, and it
further selects out a user jwith maximum cost to user i. The

Fig. 10. Illustration of partition-and-group framework.
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selected out users are considered as the pivots of two sub-
sets. Then, the algorithm iteratively picks one remaining
user with minimum cost to these two pivots to join their
groups until the input anonymity group is equally divided.
After that, the diversity check is performed on both generated
anonymity groups. If both anonymity groups are legitimate,
then return them as partition result. Otherwise, if both
groups fail the diversity check, the input anonymity group is
deemed unable to be further divided according to Proposi-
tion 1. On the other hand, if only one anonymity group
passes the diversity check, the failed group keeps borrowing
one most distant user from the succeed group, until them
both pass or fail the diversity check.

6.6 Complexity Analysis

Partition-and-group framework consists of three stages:
ðiÞ computing the cost matrixW . ðiiÞ deriving final anonym-
ity groups through iterative divisions. ðiiiÞ attaining
kt; l-anonymity on each anonymity group with kt; l-merge
algorithm. We denote the number of user as N , the average
number of check-ins and mobility records of each user as
�q and �p, respectively. Now, we analyze the computation
complexity of each stage.

Algorithm 3. Divide-2-Group Algorithm

Input: Check-in data C, mobility data R
Input: Cost matrixW
Input: Anonymity k, diversity l, time window t

Output: Groups of records C1;C2;R1;R2

i argmaxm sumðW ½m; :�Þ;
j argmaxm W ½i;m�;
C1;C2;R1;R2  partition equallyðC;R;W; i; jÞ;
stop false;
while stop 6¼ false do
if jR1j < k or jR2j < k then
Return false;

else if ! ðDðR1; t; lÞ or DðR2; t; lÞÞ then
Return false;

else if ! DðR1; t; lÞ then
C1;R1  borrow one userðC2;R2Þ;

else if ! DðR2; t; lÞ then
C2;R2  borrow one userðC1;R1Þ;

else
stop true;

Return C1;C2;R1;R2;

In the first stage, the cost matrix is computed by invoking
kt; l-merge for N2 times. Each time the kt; l-merge need to go
through the mobility records and check-ins of two users.
Therefore, the overall computation complexity for the first
stage is OðN2�q�pÞ. Instead of going through all the mobility
records, the kt; l-merge algorithm can only considered the
feasible choices, i.e., the mobility records within spatial cov-
erage Au and temporal coverage Tu from target check-ins.
Such queries can be achieved in constant time with a hash
map function. In addition, the number of check-ins per
users is often several magnitude smaller than user number
N in practice. Therefore, the actual complexity of the first
stage can be approximated as OðN2Þ. In the second stage,
the number of layers in the division tree is less than log2ðNÞ
because of the binary division, and each layer can be

computed in linear time of user number N . Therefore, the
overall complexity of the second stage is OðNlog2ðNÞÞ.
Finally, we assume the users population are partitioned into
m groups, and the average number of users in each ano-
nymity group is N=m. With previous mentioned hash map
functions, the average computation complexity of kt; l-merge
on each anonymity group is OðN2=m2Þ, and hence the over-
all complexity is OðN2=mÞ. Therefore, the overall computa-
tion complexity of partition-and-group framework is OðN2Þ.
The proposed solution can be readily deployed in quadratic
time of user population. More importantly, all three stages
of the proposed framework are highly parallelizable, which
ensures they are scalable to large user population.

7 EVALUATION

7.1 Performance Comparison

Our solution, denoted by PNG, aims to achieve kt; l-
anonymity to prevent both re-identification attack and probabi-
listic attack. In order to show its superiority, we consider
two baselines, i.e., PNG(wo) and GLOVE. PNG(wo) is a
degraded version of PNG, in the condition that only
k-anonymity is guaranteed to defend re-identification attack.
On the other hand, GLOVE [6] is a state-of-art solution to
achieve same privacy guarantee as PNG(wo). Note that there
are several differential privacy based privacy techniques in
mobility data protection [26], [31]. We do not compare these
models because they are dedicated to protecting certain
mobility records, and provide no guarantee against linkage
attack, e.g., achieving k-anonymity. To compare the perfor-
mance of these three solutions, we utilize three metrics of
average temporal resolution, average spatial resolution and
average utility cost of the sanitized check-ins. Note that
GLOVE cannot be scalable to large populations due to
the high computation complexity. In order to ensure fair
comparison, we measure the performance of these three
solutions based on two subsets with 5,000 users that are ran-
domly sampled from the two investigated datasets, respec-
tively. Note that the Weibo dataset covers a period of one
week, while WeChat dataset covers a period of one month.
It allows us to evaluate the model’s performance on datasets
with different characteristics.

We show the performance comparison of these three sol-
utions with different values of k and l( = k/2) in Figs. 11 and
12. We can observe that our PNG solution outperforms the
other two baselines in all privacy settings. With 4-anonym-
ity and 2-diversity on Weibo and WeChat datasets, the aver-
age temporal resolution of sanitized check-ins is 23 h and
48 h, while the spatial resolution is 11 km and 12 km,
respectively. Such spatial and temporal resolution is suffi-
cient to meet user’s need in documenting their daily life.
However, the average spatial and temporal resolution for
PNG(wo) is much higher, and most of sanitized check-ins
from GLOVE are too coarse-grained to use with the average
temporal resolution reaches as much as 104h. Similar results
are observed in average spatial resolution. Furthermore,
when it comes to the average utility loss, PNG has 24 and
53 percent improvements in the comparison with PNG(wo)
and GLOVE on WeChat dataset. In addition, PNG has 27
and 57 percent improvements in the comparison with PNG
(wo) and GLOVE on Weibo dataset. In summary, all these
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results have demonstrated that our proposed PNG solution
can significantly reduce check-in utility loss even with a
stricter privacy criterion kt; l-anonymity is met.

To showcase the privacy gain of the proposed model, we
compare the privacy exposure to the re-identification attack
and probabilistic attack in Figs. 13 and 14, respectively.
From Fig. 13, we observe that the medium value of anonym-
ity set size increases from 1 to 3795 in WeChat dataset and
from 1 to 5000 in Weibo dataset. It indicates the privacy
exposure to re-identification attack is dramatically reduced,
since an average user is protected by an anonymity set of
more than 3795 users after the sanitization which makes it
improbable for adversaries to uniquely re-identify them.
As for the probabilistic attack, Fig. 14a shows 87.9 percent
of unreported locations can be inferred with 60 percent
accuracy in original WeChat datasets which is reduced to
42.2 percent after the sanitization. Similar observation is
made in Fig. 14b that the percentage of locations can be
inferred with 60 percent accuracy reduced from 92.1 to
0.6 percent after the sanitization. It showcases the proposed
model is effective to prevent probabilistic attack.

To shed light on the empirical runtime, we conduct
experiments on the proposed PNG model and GLOVE on
datasets with different number of users and parameter k,

and display the empirical runtime in Fig. 15. Note that the
experiments are performed with a Intel Xeon E5-2650 CPU.
We can observe that the PNG model is consistently more
efficient than the GLOVE model in terms of consuming less
CPU runtimes across all datasets and parameter settings. In
addition, Fig. 15a shows the runtimes of both PNG and
GLOVE model increase with the number of users, and more
importantly the ratio between them increases from 2.8 to
34.74 as the number of users increases from 2500 to 10000. It
indicates our proposed model can further save computation
time as the dataset scales up. On the other hand, Fig. 15b
shows the parameter k does not significantly impact on the
overall computation runtimes, which is consistent with our
previous complexity analysis.

7.2 Impact of System Parameters

Nowwe analyze the impact of three key system parameters,
i.e., k, l and the hyper-parameters of the cost function, on the
performance of our PNG solution. To avoid redundancy, we
only demonstrate results on WeChat dataset, similar obser-
vations are made in Weibo dataset.

First, we measure the performance of PNG with different
settings of k and l, and show the results in Fig. 16. With a
fixed 2-diversity, the average temporal resolution, spatial

Fig. 12. The performance comparison between our solution and baseline on Weibo data.

Fig. 11. The performance comparison between our solution and baseline on WeChat data.

Fig. 13. The comparison on privacy exposure to re-identification attack
before and after sanitization.

Fig. 14. The comparison on privacy exposure to probabilistic attack
before and after sanitization.
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resolution and utility cost increase monotonously as k
grows from 2 to 14. However, further increase of k does not
result in a significant check-in utility degeneration, suggest-
ing that achieving a stricter privacy guarantee will only
cause limited margin check-in utility loss. In other words, it
indicates our solution can achieve favorable check-in utility
when strong privacy protection is needed. As for probabilis-
tic attack, a lager l indicates stronger privacy protection. For
both WeChat and Weibo datasets, a larger l will also cause
additional check-in utility loss. However, the additional
utility cost for preventing probabilistic attack is much smaller
when k is of higher value. It indicates the PNG framework
provides efficient solution to defend both re-identification
attack and probabilistic attack.

Second, we also evaluate the impact of the cost function
hyper-parameter on the model’s performance, i.e., the
impact of �a and �t. Since only the ratio between them mat-
ters in the optimization process, we measure the perfor-
mance of PNGwith the ratio ranging from 3 to 1/3, which is
demonstrated in Fig. 17. As the ratio between �a and �t

decreases from 3 to 1/3, we can observe the temporal reso-
lution decreases from 94.69 to 77.99 and the spatial resolu-
tion increases from 19.79 to 22.79. It indicates the hyper-
parameter �a and �t can indeed tune the PNGmodel to opti-
mize the spatial resolution and temporal resolution,
respectively.

7.3 Performance on Datasets with Different
Characteristics

First, we measure the proposed PNG model’s performance
on the datasets with different characteristics to examine its
robustness in different scenarios. Fig. 18a shows the utility
cost consistently decreases from 56.57 to 42.28 as the num-
ber of users increase. It indicates users can enjoy higher
check-in utility with same privacy criterion when more
users join the service, which is probably because each user
can find a more suitable anonymity group as the overall

user population increases. On the other hand, we measure
user’s mobility characteristics as the number of check-in
records and radius of gyration, which is each user’s activity
area measured by their mobility records’ standard deviation
from the central locations of them. We show the perfor-
mance variation with these two characteristics in Fig. 18b
and 18c, respectively. We can observe that users with only
one check-in and 0 radius of gyration have higher utility
cost, while the utility cost on other user groups does not
vary significantly. It implies it is more difficult to protect
users with only one check-in, but performance generally
does not vary with the mobility characteristics.

Second, we also evaluate the impact of the amount of
additional mobility data. Generally speaking, with more
complete knowledge about user’s mobility behavior, the
system is able to better measure the privacy sensitive of
each check-in record and derive better privacy solutions.
The results of different percentages of additional mobility
data are shown in Fig. 19. In Fig. 19a, we can observe that
only 20 percent additional mobility data in WeChat dataset
grants the system a 28.6 percent performance boost in
check-in utility. In addition, when more than 60 percent
additional mobility data is provided the performance
of system gradually reaches a relative high point, with
30.9 percent utility improvement compares with no addi-
tional mobility data. Similar results are observed on Weibo
dataset, which is shown in Fig. 19b. To conclude, the above
evaluation verifies our intuition that moderate amount of
additional mobility data can lead to significant check-in
utility improvement, which showcases the feasibility of our
system in real-world scenario.

7.4 Discussion

Implications for Check-In Service Providers. The immediate
implication of our study is that publilc check-ins suffer severe
privacy exposure to linkage attacks. Adversary is able to learn
additional knowledge about users beyond the check-ins they
post by correlating the check-ins with other anonymous

Fig. 15. Empirical runtime on datasets with different number of users and
parameter k.

Fig. 16. The performance of our algorithm under different k and l on WeChat dataset.

Fig. 17. Impact of hyper-parameters of the cost function.
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mobility datasets. Naive generalization techniques cannot
effectively prevent such attacks while maintaining reasonable
check-in utility. However, we also demonstrated that check-
in service providers can more accurately measure the privacy
sensitivity of check-ins by leveraging additional mobility
records of users. Furthermore, we showcase the information
of additional mobility data can be exploited to significantly
improve check-in utility.

Implications for Individual Users. The most insightful
implication for individual users is that there exists two
trade-offs in privacy-preserving check-in service. First, indi-
vidual may choose to improve the privacy level of their
check-ins by posing check-ins with coarse-grained spatio-
temporal resolutions. However, moderate privacy gain
often requires significant check-in utility sacrifice. Second,
users may effectively increase the utility of check-ins while
enjoying the same privacy level by allowing check-in ser-
vice providers to collect some additional mobility data,
which can be limited on insensitive areas. Such findings
may transform users’ attitude toward check-in service
providers’ data collection, and form new kind of partner-
ship between users and check-in service providers to
defend linkage attacks.

Limitations. First, our analysis on check-in utility is still
coarse-grained. For instance, check-in records in different
regions, e.g., rural area and urban area, could have different
contribution to the overall utility. Such fine-grained model-
ling requires in-depth user study, which we leave as our
future work. Second, the currently proposed privacy frame-
work is not specialized for longitude attacks. For example, a
current secure check-in may be vulnerable in the future due
to unpredictable human mobility. An intuitive method to
address this problem is to design a sliding window algo-
rithm to bound the privacy leakage in each window by a
given budget.

8 CONCLUSION

In this paper, we investigate the problem of understanding
and defending the linkage attacks on check-in services.
Through extensive empirical analysis on two real-world
datasets, we make important observations that the actual pri-
vacy sensitivity of check-ins is significantly smaller than one
would expect from the uniqueness of check-ins, which can
be better measured by introducing additional mobility data.
Inspired by these findings, we design a novel partition-and-
group framework that integrates the information of check-ins
and additional mobility data to provide privacy-preserving
and useful check-in service. Evaluation results show that the
proposed framework significantly outperforms state-of-art
baseline in terms of improving the check-in utility by 24�57
percent and providing stronger privacy guarantee in the
same time. We believe our study opens a new angle on mea-
suring and preserving user privacy on check-in services.

ACKNOWLEDGMENTS

This work was supported in part by The National Key
Research and Development Program of China under Grant
2018YFB1800804, the National Nature Science Foundation
of China under U1936217, 61971267, 61972223, 61941117,
61861136003, Beijing Natural Science Foundation under
L182038, Beijing National Research Center for Information
Science and Technology under 20031887521, and research
fund of Tsinghua University - Tencent Joint Laboratory for
Internet Innovation Technology.

REFERENCES

[1] I. Bilogrevic, K. Huguenin, S. Mihaila, R. Shokri, and J. P. Hubaux,
“Predicting users’ motivations behind location check-ins and util-
ity implications of privacy protection mechanisms,” in Proc. 22nd
Netw. Distrib. Syst. Secur. Symp., Internet Society, 2015.

[2] A. Cecaj, M. Mamei, and N. Bicocchi, “Re-identification of anony-
mized cdr datasets using social network data,” in Proc. IEEE Int.
Conf. Pervasive Comput. Commun. Workshops, 2014, pp. 237–242.

[3] R. Chen, B. Fung, B. C. Desai, and N. M. Sossou, “Differentially
private transit data publication: A case study on the montreal
transportation system,” in Proc. 18th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, 2012, pp. 213–221.

[4] Y.-A. De Montjoye, L. Radaelli, V. K. Singh, et al., “Unique in the
shopping mall: On the reidentifiability of credit card metadata,”
Sci., vol. 347, no. 6221, pp. 536–539, 2015.

[5] S. Patil, G. Norcie, A. Kapadia, and A. J. Lee, “Reasons, rewards,
regrets: Privacy considerations in location sharing as an interactive
practice,” in Proc. 8th Symp. Usable Privacy Security, 2012, pp. 1–15.

[6] M. Gramaglia and M. Fiore, “Hiding mobile traffic fingerprints
with glove,” in Proc. 11th ACM Conf. Emerg. Netw. Experiments
Technol., 2015, Art. no. 26.

Fig. 18. The model performance on datasets with different characteristics.

Fig. 19. The performance on dataset with different amount of additional
mobility data.

XU ET AL.: NO MORE THAN WHAT I POST: PREVENTING LINKAGE ATTACKS ON CHECK-IN SERVICES 631

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 02,2022 at 02:16:47 UTC from IEEE Xplore.  Restrictions apply. 



[7] H. Zang and J. Bolot, “Anonymization of location data does not
work: A large-scale measurement study,” in Proc. 17th Annu. Int.
Conf. Mobile Comput. Netw., 2011, pp. 145–156.

[8] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubrama-
niam, “l-diversity: Privacy beyond k-anonymity,” ACM Trans.
Knowl. Discovery Data, vol. 1, no. 1, 2007, Art. no. 3.

[9] P. Ohm, “Broken promises of privacy: Responding to the surprising
failure of anonymization,” Ucla L. Rev., vol. 57, 2009, Art. no. 1701.

[10] C. Dwork, “Differential privacy,” in Proc. Int. Colloq. Automata,
Languages, Program., 2006, pp. 1–12.

[11] L. Sweeney, “k-anonymity: A model for protecting privacy,”
Int. J. Uncertainty, Fuzziness Knowl.-Based Syst., vol. 10, no. 05,
pp. 557–570, 2002.

[12] N. Li, T. Li, and S. Venkatasubramanian, “t-closeness: Privacy
beyond k-anonymity and l-diversity,” in Proc. IEEE 23rd Int. Conf.
Data Eng., 2007, pp. 106–115.

[13] Z. Tu, F. Xu, Y. Li, P. Zhang, and D. Jin, “A new privacy breach:
User trajectory recovery from aggregated mobility data,” IEEE/
ACM Trans. Netw., vol. 26, no. 3, pp. 1446–1459, Jun. 2018.

[14] B.-C. Chen, D. Kifer, K. LeFevre, A. Machanavajjhala, et al.,
“Privacy-preserving data publishing,” Foundations Trends� Data-
bases, vol. 2, no. 1–2, pp. 1–167, 2009.

[15] J. Su, A. Shukla, S. Goel, and A. Narayanan, “De-anonymizing
web browsing data with social networks,” in Proc. 26th Int. Conf.
World Wide Web, 2017, pp. 1261–1269.

[16] P. Welke, I. Andone, K. Blaszkiewicz, and A. Markowetz,
“Differentiating smartphone users by app usage,” in Proc. ACM
Int. Joint Conf. Pervasive Ubiquitous Comput., 2016, pp. 519–523.

[17] Y. Shen, F. Wang, and H. Jin, “Defending against user identity
linkage attack across multiple online social networks,” in Proc.
23rd Int. Conf. World Wide Web, 2014, pp. 375–376.

[18] C. Marlow, C. Marlow, and C. Marlow, “Find me if you can:
Improving geographical prediction with social and spatial
proximity,” in Proc. Int. Conf. World Wide Web, 2010, pp. 61–70.

[19] K. Shu, S. Wang, J. Tang, R. Zafarani, and H. Liu, “User identity
linkage across online social networks: A review,” ACM SIGKDD
Explorations Newslett., vol. 18, no. 2, pp. 5–17, 2017.

[20] Z. Tu, K. Zhao, F. Xu, Y. Li, L. Su, and D. Jin, “Protecting trajectory
from semantic attack considering k-anonymity, l-diversity and
t-closeness,” IEEE Trans. Netw. Service Manage., vol. 16, no. 1,
pp. 264–278, Mar. 2018.

[21] Z. Tu, K. Zhao, F. Xu, Y. Li, L. Su, and D. Jin, “Beyond k-anonym-
ity: Protect your trajectory from semantic attack,” in Proc. 14th
Annu. IEEE Int. Conf. Sens., Commun., Netw., 2017, pp. 1–9.

[22] F. Bonchi, L. V. Lakshmanan, and H. W. Wang, “Trajectory ano-
nymity in publishing personal mobility data,” ACM SIGKDD
Explorations Newslett., vol. 13, no. 1, pp. 30–42, 2011.

[23] F. Xu, Z. Tu, Y. Li, P. Zhang, X. Fu, and D. Jin, “Trajectory recov-
ery from ash: User privacy is not preserved in aggregated mobility
data,” in Proc. 26th Int. Conf. World Wide Web, 2017, pp. 1241–1250.

[24] G.Acs andC. Castelluccia, “A case study: Privacy preserving release
of spatio-temporal density in paris,” in Proc. 20th ACM SIGKDD Int.
Conf. Knowl. DiscoveryDataMining, 2014, pp. 1679–1688.

[25] C. Gao, C. Huang, Y. Yu, H. Wang, Y. Li, and D. Jin, “Privacy-
preserving cross-domain location recommendation,” in Proc.
ACM Interactive, Mobile, Wearable Ubiquitous Technol., 2019,
Art. no. 11.

[26] M. E. Andrs, K. Chatzikokolakis, and C. Palamidessi, “Geo-
indistinguishability: Differential privacy for location-based sys-
tems,” in Proc. ACM SIGSAC Conf. Comput. Commun. Security,
2013, pp. 901–914.

[27] K. Chatzikokolakis, C. Palamidessi, and M. Stronati, “A predictive
differentially-private mechanism for mobility traces,” in Proc. Int.
Symp. Privacy Enhancing Technol. Symp., 2013, vol. 8555, pp. 21–41.

[28] B. Bamba, L. Liu, P. Pesti, and T. Wang, “Supporting anonymous
location queries in mobile environments with privacygrid,” in
Proc. Int. Conf. World Wide Web, 2008, pp. 237–246.

[29] T. Xu and Y. Cai, “Location anonymity in continuous location-
based services,” in Proc. 15th Annu. ACM Int. Symp. Adv.
Geographic Inf. Syst., 2007, Art. no. 39.

[30] C.-Y. Chow and M. F. Mokbel, “Trajectory privacy in location-
based services and data publication,” ACM SIGKDD Explorations
Newslett., vol. 13, no. 1, pp. 19–29, 2011.

[31] S. Oya, C. Troncoso, and F. P�erez-Gonz�alez, “Back to the drawing
board: Revisiting the design of optimal location privacy-preserv-
ing mechanisms,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Security, 2017, pp. 1959–1972.

[32] M. Gramaglia, M. Fiore, A. Tarable, and A. Banchs, “Preserving
mobile subscriber privacy in open datasets of spatiotemporal
trajectories,” Proc. IEEE Conf. Comput. Commun., 2017, pp. 1–9.

[33] A. Monreale, G. L. Andrienko, N. V. Andrienko, F. Giannotti,
D. Pedreschi, S. Rinzivillo, and S. Wrobel, “Movement data ano-
nymity through generalization,” Trans. Data Privacy, vol. 3, no. 2,
pp. 91–121, 2010.

[34] M. E. Nergiz, M. Atzori, and Y. Saygin, “Towards trajectory ano-
nymization: A generalization-based approach,” in Proc. SIGSPATIAL
ACMGIS Int. Workshop Security Privacy GIS LBS, 2008, pp. 52–61.

[35] V. Primault, S. B. Mokhtar, C. Lauradoux, and L. Brunie, “Time
distortion anonymization for the publication of mobility data with
high utility,” in Proc. IEEE Trustcom/BigDataSE/ISPA, 2015, vol. 1,
pp. 539–546.

[36] Y.-A. DeMontjoye, C. A. Hidalgo,M. Verleysen, andV. D. Blondel,
“Unique in the crowd: The privacy bounds of human mobility,”
Sci. Rep., vol. 3, 2013, Art. no. 1376.

[37] L. Rossi and M. Musolesi, “It’s the way you check-in: Identifying
users in location-based social networks,” in Proc. 2nd ACM Conf.
Online Social Netw., 2014, pp. 215–226.

[38] L. Rossi, M. Musolesi, and A. Torsello, “On the k-anonymization
of time-varying and multi-layer social graphs.” in Proc. 9th AAAI
Int. Conf. Weblogs Social Media, 2015, pp. 377–386.

[39] H. Wang, Y. Li, G. Wang, and D. Jin, “You are how you move:
Linking multiple user identities from massive mobility traces,” in
Proc. SIAM Int. Conf. Data Mining, 2018, pp. 189–197.

[40] H. Wang, C. Gao, Y. Li, G. Wang, D. Jin, and J. Sun, “De-
anonymization of mobility trajectories: Dissecting the gaps
between theory and practice,” in Proc. 25th Annu. Netw. Distrib.
Syst. Secur. Symp., 2018.

[41] D. Yang, D. Zhang, and B. Qu, “Privcheck: Privacy-preserving
check-in data publishing for personalized location based serv-
ices,” in Proc. ACM Int. Joint Conf. Pervasive Ubiquitous Comput.,
2016, pp. 545–556.

[42] Z. Huo, X. Meng, and R. Zhang, “Feel free to check-in: Privacy
alert against hidden location inference attacks in GeoSNs,” in
Proc. Int. Conf. Database Syst. Adv. Appl., 2013, pp. 377–391.

[43] C. Dwork, “Differential privacy,” Encyclopedia Cryptography Secu-
rity, H. C. A. van Tilborg and S. Jajodia, Eds. Boston, MA: Springer
US, pp. 338–340, 2011, doi: 10.1007/978-1-4419-5906-5_752.

[44] Z. Cheng, J. Caverlee, K. Lee, and D. Sui, “Exploring millions of
footprints in location sharing services,” in Proc. 5th Int. AAAI Conf.
Weblogs Social Media, 2011. [Online]. Available: https://www.aaai.
org/ocs/index.php/ICWSM/ICWSM11/paper/view/2783

[45] M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabasi, “Under-
standing individual human mobility patterns,” Nature, vol. 453,
no. 7196, 2008, Art. no. 779.

Fengli Xu received the BS degree in electronics
and information engineering from Huazhong Uni-
versity of Science and Technology, Wuhan, China,
in 2015, and he is currently working toward the
PhD degree from Electronic Engineering Depart-
ment, Tsinghua University, Beijing, China. His
research interests include human mobility, mobile
big datamining and user behaviormodeling.

Yong Li (M’09-SM’16) received the BS degree in
electronics and information engineering from
Huazhong University of Science and Technology,
Wuhan, China, in 2007 and the PhD degree in
electronic engineering from Tsinghua University,
Beijing, China, in 2012. He is currently a faculty
member of the Department of Electronic Engineer-
ing, Tsinghua University, Beijing, China. He has
served as general chair, TPC chair, TPC member
for several international workshops and conferen-
ces, and he is on the editorial board of two IEEE

journals. His papers have total citations more than 6700. Among them,
ten are ESI Highly Cited Papers in Computer Science, and four receive
conference Best Paper (run-up) Awards. He received IEEE 2016 ComSoc
Asia-Pacific Outstanding Young ResearchersYoung Talent Program of
China Association for Science and Technology and The National Youth
Talent Support Program. He is a senior member of the IEEE.

632 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 2, FEBRUARY 2021

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 02,2022 at 02:16:47 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1007/978-1-4419-5906-5_752
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/view/2783
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/view/2783


Zhen Tu received the BS degree in electronics
and information engineering and the second BS
degree in economics both from Wuhan Univer-
sity, Wuhan, China, in 2016, and currently she is
working towards the master degree from Elec-
tronic Engineering Department, Tsinghua Univer-
sity, Beijing, China. Her research interests
include mobile big data mining, user behavior
modeling, data privacy, and security.

Shuhao Chang received the BS degree in elec-
tronics information science and technology from
Tsinghua University, Beijing, China, in 2019, and
he is currently working toward the master’s
degree in Computer Science and Engineering
Department, University of California San Diego,
San Diego, California. His research interests
include mobile big data mining, human mobility,
and deep transfer learning.

Hongjia Huang received the BS degree from
Electronic Engineering Department, Tsinghua
University, Beijing, China, in 2019. Currently, he
is working toward the master’s degree from Elec-
trical and Computer Engineering Department,
University of California, Los Angeles, California.
His research interests include mobile computing
and ubiquitous computing.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

XU ET AL.: NO MORE THAN WHAT I POST: PREVENTING LINKAGE ATTACKS ON CHECK-IN SERVICES 633

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 02,2022 at 02:16:47 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


